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S1. Introduction 
Here we describe in detail the mathematics underpinning SLAPenrich, its implementation, a case study, as 

well as a comparison with PathScore and PathScan, two related tools. 

 

SLAPenrich is implemented as an R package (available at https://github.com/saezlab/SLAPenrich). 

It includes different collections of pathway gene sets from multiple public available sources 1, together with 

all the data objects needed to run the analysis described in our manuscript. However, it can be also used with 

any user-defined collection of gene-sets. An overview of the exposed functions of the R package is provided 

in Additional File 8. 

The statistical framework implemented by SLAPenrich is detailed in the Methods section of our manuscript. 

To visualize enriched pathways SLAPenrich makes use of presence/absence matrices visualised as binary 

heatmaps where columns indicate samples, rows indicate genes harboring at least one somatic mutation in at 

least one sample of the analyzed dataset, and colors indicate the absence or the presence of somatic mutations 

(respectively) in a given gene/sample combination. To emphasize mutual exclusivity trends among the row-

wise mutation patterns, rows and columns of these heatmaps are sorted with a heuristic method (detailed 

below) that minimizes the superposition of mutated samples column-wisely, thus the overlaps of the mutation 

patterns across the rows (an example is provided in Supplementary Figure S2A). To finally summarize the 

results, an analysis of the enriched-pathway core-component genes can be performed. The aim of this final 

analysis is to visualize in the same heatmap enriched pathways that share a frequently mutated sub-set of 

genes (the core-component) that is supposed to lead the pathway enrichments, together with a membership 

matrix specifying to which enriched pathway each core-component gene belongs to (an example is provided 

in Supplementary Figure S2B, introduced in the next section). This allows filtering out from the results those 

pathways that are not directly relevant to the disease under consideration, in a supervised way. A final feature 
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of the package is the identification of pathways that are differentially enriched (thus frequently altered) across 

two sub-populations of samples of the same input dataset, as detailed in the following sections. 

 

 

S2. Heuristic mutual exclusivity sorting and pathway visualization 
The set of somatic mutations of a cancer genomic dataset can be easily modeled as a binary (or Boolean) 

matrix, whose entries can assume only two possible values, i.e. 0 or 1. In this case, the columns indicate 

samples, its rows indicate genes (or vice-versa) and a non-zero entry the presence of a somatic mutations in 

a given gene/sample combination. In a binary matrix, a run is a sequence of consecutive non-zero entries. 

Reordering rows and columns in a way that the number of runs on the rows and the column-wise marginal 

totals are minimized is an effective way to highlight patterns of mutual exclusivity among the runs of different 

rows, i.e. the genes of the considered sub-set. This is an NP-hard problem 2 here referred as mutual-exclusivity 

sorting. In SLAPenrich a heuristic implementation of the mutual-exclusivity sorting is provided in a 

dedicated R function used by the internal visualization routines, although this function is also available and 

usable on any user defined binary matrix. Here, for simplicity we will describe an execution of this heuristic 

applied to a binary matrix summarizing a genomic dataset (with genes on the rows, samples on the columns, 

and binary entries specifying the status of a gene in a given sample). 

 

In the initial step of the algorithm all the samples and all the genes in the input matrix are declared as 

uncovered and an empty vector is initialized: this is the set of covered genes G. Then the algorithm proceeds 

through a series of iterations until the sets of uncovered genes and uncovered samples are both empty. In 

each of these iterations a best in class gene is identified. This is the uncovered gene with the maximal 

exclusive coverage, which is defined as the number of uncovered samples in which this gene is mutated 

minus the number of samples in which at least another uncovered gene is mutated. Finally, the identified best 

in class gene is removed from the set of the uncovered genes, it is attached to G, and the set of samples in 

which it is mutated are removed from the set of the uncovered samples. 

After these iterations have been executed, an empty vector of samples L is initialized and all the samples of 

the dataset are labeled again as uncovered. Then for each of the best in class gene g (in the same order as 

they appear in G) and until there are uncovered samples, the uncovered samples in which g is mutated are 

sorted according to the exclusive coverage of g across them (in decreasing ordered), they are labeled as 

covered samples and attached in the resulting order to L. 

To obtain the final mutual-exclusivity sorting of the initial dataset, the corresponding inputted binary matrix 

is rearranged by permuting the genes/rows in the same order as they appear in G and the samples/columns in 

the same order as they appear in L. 
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S3. Identification and visualization of enriched pathway core-components 
To identify shared core-components across significantly enriched pathways, the set of enriched pathways and 

their composing genes are modeled as a bipartite network, in which nodes in the first set correspond to 

enriched pathways and nodes in the second set to genes belonging to at least one of the enriched pathways. 

Finally a pathway node is connected with an edge to each of its composing gene nodes. The resulting bipartite 

network is then mined for communities, i.e. groups of densely interconnected nodes, by using a fast 

community detection algorithm based on a greedy strategy 3. The resulting communities are finally visualized 

as independent heatmaps where nodes in the first set (pathways) are on the columns, nodes in the second set 

(genes) are on the rows and a not-empty cell in position i,j indicates that the i-th gene belongs to the j-th 

pathway (an example is provided in Supplementary Figure S2B). 

 

 

S.4 Differential pathway enrichment analysis 
Similarly to differential gene expression analysis, the two sub-populations to be contrasted are defined 

through a contrast matrix. Then individual SLAPenrichment analyses are performed on these two 

populations, yielding two sets of results. The pathways that are significantly enriched in at least one of the 

two analyses (according to a user defined false discovery rate (FDR) threshold) are then selected and, for 

each of them, a differential enrichment score is computed as: 

 

∆",$(𝑃) = − log-. 𝐹𝐷𝑅"(2) + log-. 𝐹𝐷𝑅$(2) 

 

where 𝐴 and 𝐵 are the two contrasted sub-populations (respectively, positive and negative) and 𝐹𝐷𝑅"(2) and 

𝐹𝐷𝑅$(2) are the two SLAPenrichment FDRs obtained in the two corresponding individual analyses, and 𝑃 

is the pathway under consideration. Graphic routines included in our package allow a pathway level 

visualization of the inputted alterations across the two contrasted population, on the domain of the 

differentially enriched pathways as well as heatmaps and barplots of the differential enrichment scores (see 

an example in Supplementary Figure S2C). 

 

 

S.5 LUAD case study analysis, detailed results and comparison with other 

methods 
To test the ability of SLAPenrich to recover pathways that are known to be associated to a given disease state 

and different clinico-pathological features, we re-analysed, a published dataset encompassing somatic 

mutations found in 188 lung adenocarcinoma (LUAD) patients, studied in 4. To this aim we downloaded 

annotations of somatic variants and associated clinical information from 
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http://genome.wustl.edu/pub/supplemental/tsp_nature_2008/ (files: supplementary_table_2.tsv and 

supplementary_table_15.tsv, respectively). 

The variants annotations were converted into a genomic event matrix (EM) with altered genes on the rows, 

patient sample identifiers on the columns, and generic i,j entries specifying the number of observed point 

mutations hosted by the i-th gene in the j-th patient. 

A SLAPenrich analysis on the resulting dataset was performed using the SLAPE.analyse function with 

default values for all the parameters (including a Bernoulli model 5 for the individual pathway alteration 

probabilities across all the samples, and the choice of the set of all the altered genes in the dataset as 

background population), and a pathway gene sets collection from KEGG 6 (embedded in the package as R 

data object: SLAPE.MSigDB_KEGG_hugoUpdated). 

 

This analysis yielded 48 significantly enriched pathways, at a FDR < 5% and a mutual exclusive coverage 

(EC)  > 50% (Supplementary Table S1). Among these, we found pathways whose deregulation is known to 

be involved in lung cancer, such as Tight Junction (alteration score (AS) = 0.37, EC = 89%)7 (Supplementary 

Figure S2A), Gap Junction (AS = 0.45, EC = 75%)8, and several pathways previously found with other 

computational methods in LUAD (such as PathScan4, among others 9 - examples include Focal Adhesion 

(AS = 0.06, EC = 84%), ERBB signaling pathway (AS = 0.27, EC = 69%), and Dorsoventral Axis Formation 

(AS = 0.42, EC = 55%). Additionally, we found a number of pathways recently proposed as potential targets 

for lung cancer therapy such as GNRH signaling pathway (AS = 0.45, EC = 87\%) 10, WNT signaling pathway 

(AS = 0.29, EC = 74\%) 11, and VEGF signaling pathway (AS = 0.33, EC = 80\%) 12. 

After applying the same result curation described in 4, i.e. removal of known cancer pathways whose mutation 

lists are invariably collectively dominated by mutations in TP53, KRAS and EGFR, we found a significant 

agreement between our results and those obtained with PathScan on the same cohort of cancer patients (and 

reported in the Supplementary Table 1 of 4: 26 enriched pathways (FDR < 5\% for both SLAPenrich and 

PathScan), out of 36 pathways enriched for SLAPenrich and 31 enriched for PathScan (at the same FDR 

threshold), Fisher's exact test (FET) p-value = 2.10 x 10-14 (Supplementary Tables S1 and S2). 

Additionally, we observed a significant correlation (R = 0.66, p = 0.0002) between the significance levels of 

the 26 commonly enriched pathways across the two methods (Supplementary Figure S3A). 

 

A similar, comparison was performed between the output obtained with SLAPenrich and PathScore 13 on the 

same LUAD dataset. For this analysis a collection of 1,392 canonical pathway signatures from the Molecular 

Signature Database (MsigDB) 14 was used, as this is the reference collection used by PathScore. We observed 

a significant overlap (181 pathways, FET p-value = 2.76 x 10-70) between the enriched pathways outputted 

by SLAPenrich (at an FDR < 5\%) and those outputted by PathScore (adjusted p-value < 0.05) 

(Supplementary Table S3). 

As most of the significantly enriched pathways outputted by PathScore have a null p-value it was not possible 

to check the correlation between the patterns of enrichment significance across the two methods. However 
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when looking at the top enriched pathways across the two analyses (SLAPenrich FDR = 1.76 x 10^-12 and 

PathScore adjusted p-value = 0) the results' concordance was even more pronounced (100 overlapping 

pathways out of the 117 outputted by SLAPenrich and the 176 outputted by PathScore, FET p-value 8.63 x 

10-83), Supplementary Table S3. 

 

To further validate the ability of SLAPenrich in identifying disease relevant pathways and highlight the 

possible analytical venues allowed by our tool, we considered the clinical information of the samples in the 

analyzed LUAD dataset. Using this data, we stratified the considered patients based on their smoking status 

(never-smoker and current-smokers) and their bronchioalveolar carcinoma type (mucinous and non-

mucinous), and performed a differential SLAPenrich analysis contrasting the variant profiles of the obtained 

sub-populations, using the far larger publicly available collection of pathway gene sets from Pathway 

Commons 1, post-processed for redundancy removal as described in the Methods section of the main text. 

Outcomes from the first analysis, comparing never-smoker vs. current-smokers, are reported in 

Supplementary Table S4 and summarized in Supplementary Figure S2C. In total we found 147 differentially 

enriched pathways (enriched at FDR < 5% in at least one of the two sub-populations). Ranking these 

pathways according to their differential pathway enrichments, in decreasing order (Supplementary Figure 

S2C) highlighted, consistently with previously reported findings, in the current-smokers population a 

prominent enrichment of alterations in the RAS/RAF/MEK signaling cascade 15, telomerase activity 16, 

NOXA and PUMA signaling 17. On the other hand, in the never-smoker population we observed prominent 

enrichments in EGFR signaling and EGFR-dependent endothelin signaling pathways 18. 

When contrasting mucinous versus non-mucinous BAC types (Supplementary Figure S3B and 

Supplementary Table S5), we observed again correct associations between the mucinous BAC type and 

pathway alteration enrichments in the RAS/RAF/MEK signaling cascade 19, signaling by leptin 20, PI3K and 

MTOR signaling pathways 21, and inflammation related pathways such as CXCR3 and GM-CSF mediated 

signaling. For the non-mucinous BAC type population prominent enrichments were observed in pathways 

involving EGFR signaling consistently with what reported in 22. 

We also performed, with the same common collection of pathways as above, a systematic comparison 

between SLAPenrich and PathScore 13 on genomic datasets encompassing 4,415 patients across 10 different 

cancer types from The Cancer Genome Atlas (TCGA). Results confirmed that SLAPenrich and PathScore 

detect very similar sets of enriched pathways across all the different analysed cancer types (median –log10 

(FET p-value) = 119.2, ranging from 29 to 202, Supplementary Figure S4A). We observed a slightly better 

ability of SLAPenrich in ranking highly pathways that include at least one tissue-specific high-confidence 

cancer gene (HCG) 23 median HCGs covered by the top 10 enriched pathway for SLAPenrich =  18% against 

8% for PathScore; 21% and 14% for the top 20; 33% and 25% for the top 50; 45% and 34% for the 100% 

(Supplementary Figure S4BC). The median difference of HCGs covered by pathways enriched according to 

the two methods at the same significance level (5% FDR for SLAPenrich and adjusted p < 0.05 for PathScore) 

favoured PathScore for a 1%. 
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As explained in the main text, even if performing similarly to SLAPenrich a number of features of PathScan 

and PathScore make them unsuitable for the hallmark analyses presented here. Finally, SLAPenrich post-

processes pathway collections for redundancy reduction: in this way pathways with large overlaps are merged 

together instead of being tested individually (Figure 3). In summary, while other tools, specially PathScore, 

are based on similar assumptions and perform comparably, SLAPenrich provides a more flexible 

environment enabling a wide range of possible large-scale analyses. 

 

S.6 SLAPenrich output stability test 
For each of the 10 considered cancer types C considered in the analysis described in the main text, and whose 

somatic mutations were included in the dataset D, we generated 10 new datasets Ds (respectively, Dp) 

simulating a reduction of mutation call sensitivity (respectively, specificity) to 95, 80, 70, and 50%, by 

removing (respectively, introducing) a corresponding amount of random mutations uniformly distributed 

across the genome. Therefore, we introduced in each simulated dataset, a ratio of 5, 20, 30 and 50%, 

respectively, of false positives (FP) and false negatives (FN). To simulate a uniform spread of the introduced 

noise on the genome, for each simulated dataset the amount of FP/FN to inflate was partitioned across all the 

genes proportionally to their total exonic block lengths, and across patient samples proportionally to their 

mutation burdens. This resulted into 80 noise-inflated analyses for each cancer type. Subsequently, we 

executed SLAPenrich on each of the noise-inflated datasets, for a total amount of 800 different runs. Then 

we compared the set of pathways outputted by each of these noise inflated SLAPenrich analyses with that 

outputted when running SLAPenrich on the corresponding original (non-perturbed) dataset D, by means of 

Receiver Operatic Characteristic (ROC) indicators obtaining the results shown in Supplementary Figure S6 

and described in the main text. 
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Supplementary Figures 
 
 

 
Supplementary Figure S1: Schematic of the statistical framework underlying SLAPenrich. The 

probability 𝒑𝒊 of a pathway 𝑷 being genomically altered in the individual sample 𝒔𝒊 of the analyzed 

dataset is computed. This accounts for the somatic mutation rate of the sample and the sum of the total 

exonic length blocks of all the 𝒌 genes in the pathway under consideration. 𝑿𝒊 is a random variable 

quantifying the number of genes belonging to 𝑷 that are altered in 𝒔𝒊, hence the probability of 𝑷 being 

altered is  𝒑𝒊 = Pr(𝑿𝒊 ≥ 𝟏). (B) A pathway 𝑷 is assumed to be genomically altered in the sample 𝒔𝒊 if 

at least one of its 𝒌 genes is mutated in 𝒔𝒊. (C) The number of samples for which 𝑿𝒊 is greater than 0 is 

modeled through a Poisson binomial distribution 𝝅. Here the success probabilities are the likelihoods 

computed in A. 𝜹 is the Dirac delta function, equal to 1 only when its argument is equal to 0. A p-value 

against the null hypothesis that there is no association between 𝑷 and the genomic somatic alterations 

in the analyzed dataset is computed as the complementary cumulative distribution function of 𝒑𝒊 

evaluated at 𝑶(𝑷), which is the observed number of samples where 𝑷 is genomically altered. 
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Supplementary Figure S2: Visualization of enriched pathways, core-components and differential 

pathway enrichment analysis for the LUAD case study. (A) Heatmap summarizing the status of the 

genes belonging to a pathway enriched at the population level in the case study of the lung 

adenocarcinoma dataset. Genes and patient samples (respectively on rows and columns) have been 

permuted with a dedicated function in order to highlight mutual exclusivity trends in the observed 

somatic alterations. (B) Heatmap showing a sub-set of genes (on the rows) shared by multiple 

significantly enriched pathways (on the columns), together with a bar plot diagram (on the right) 

showing the percentages of patient samples where each gene is altered. SLAPenrich automatically 
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generates these figures. (C) Visual output of the differential enrichment analysis function using the case 

study lung adenocarcinoma dataset in input, and stratifying patients based on their smoking status. The 

heatmap on the left shows the alteration status of the top/bottom 10 most positively/negatively 

differentially enriched pathways between the groups of smokers vs non-smokers (on the column); the 

heatmap in the centre shows enrichment significance of individual pathways in the two sub-populations, 

and the barplot shows corresponding differential sample level enrichment scores. 
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Supplementary Figure S3: Differential pathway enrichment analysis results: non-mucinous vs 
mucinous bronchioloalveolar LUAD patients and comparison with PathScan. (A) Comparison 

between the significance levels of the enriched pathways (blue dots) identified with both SLAPenrich 

(x-axis) and PathScan (y-axis) on the LUAD dataset;  Results from a differential SLAPenrich analysis 

obtained contrasting two sub-pulations of LUAD patients based on their bronchioloalveolar type (non-

mucinous vs. mucinous). 
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Supplementary Figure S4: Pathway enrichment significance correlation between SLAPenrich 

and PathScore. (A) Number of enriched pathways detected by SLAPenrich, PathScore and both 

methods across cancer types (left barplot), and overlap significance (right barplot); (B) Percentages of 

tissue specific high-confidence cancer driver genes included in the top 10, 20, 50 and 100 enriched 

pathways according to SLAPenrich and PathScore across cancer types (first 4 barplots), and in whole 

set of statistically significantly enriched pathway (FDR < 5% for SLAPenrich and adjusted p-value < 

0.05 for PathScore; (C) Percentages of tissue specific high-confidence cancer driver genes included in 

the top k enriched pathways according to SLAPenrich and PathScore. For SLAPenrich, all the possible 

k values are considered; PathScore does not output results for all the tested pathways but only for the 

significantly enriched one, therefore in this case k ranges from 1 to the least significantly enriched 

pathway. 
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Supplementary Figure S5: SLAPenrich stability with respect to random noise. (A) Receiver 

Operating Characteristic (ROC) curves obtained by comparing the output of SLAPenrich executions on 

noise inflated versions of 10 genomics datasets (one per analysed cancer type) with that resulting from 

executing SLAPenrich on the corresponding original dataset. Plots on the first row show results from 

considering increasing ratios of inflated false negative variants, whereas those on the second row show 

results obtained when considering increasing ratios of inflated false positive variants. (B) Areas under 

the curves (AUCs) showed in the plots in A, grouped according to the ratio of inflated false negative 

variants (left plot) and false positive variants (right plot). In each plot a fifth background (BG) group, 

showing average AUCs from comparing results from each SLAPenrich analysis (on non noise inflated 

datasets) with all the others has been included for reference. 
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Supplementary Figure S6: Enriched pathways versus sample size, downsampled analyses, and 

covered known cancer genes. (A) Ratios of significantly enriched pathways that are mapped/not-

mapped onto canonical cancer hallmarks across cancer types. (B) Number of significantly enriched 

pathway at the population versus the number of samples available in the analysed cohorts, across cancer 

type. (C) Number of significantly enriched pathway at the population level across 5 different cancer 

types (with more than 350 samples), indicated by different colors, and down-sampled trials. In each of 

this trials, for each cancer type and 50 different iterations, a set of $n$ samples is randomly selected and 

a SLAPenrich analysis is performed on this sub-set of data. Average number of SLAPenriched pathway 

(and standard deviations) are reported. n = 800, 400, and 250 for BRCA and n = 250 for the other four 

cancer type. For four of the tested tissues there is no tendency for increased number of samples to 

produce more SLAPenriched pathways. A mild dependency trend is observable for BRCA only, with a 

continuously increasing average number of enriched pathways as a function of sample size up to 800 

samples, that plateaus above this size, with a very similar number of enriched pathways when analysing 

1,132 samples or across 50 analysis on 800 pathways. (D) Each bar quantifies the ratio of high-

confidence cancer genes contained in at least one pathway enriched at the population level (covered 

pathways), across cancer types. Different contained colored bars indicate the ratio of the genes included 

in covered pathways associated to different hallmarks, one colored bar per hallmark. The white bar at 

the top indicates the ratio of genes included in covered pathways associated to multiple hallmarks. 
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Supplementary Figure S7: Hallmark heterogeneity across cancer types. Heatmaps showing 

pathways enrichments at the population level across cancer types for individual hallmarks. Color 

intensities correspond to the enrichment significance. Cancer types and pathways are clustered using a 

correlation metric. See also Figure 4. 
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Supplementary Figures S8: Impact of known cancer genes' mutations on the results. Heatmaps 

showing, for each enriched-pathway/cancer-type, the ratio between the number samples harbouring 

mutations in known cancer genes belonging to the pathway under consideration and the total number of 

samples harbouring mutations in any gene belonging to the pathway under consideration. See also 

Figure 6. 
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Supplementary Figures S9: Impact of known cancer genes' mutations on the results. Heatmaps 

showing, for each enriched-pathway/cancer-type, the ratio between the number samples harbouring 

mutations in known cancer genes belonging to the pathway under consideration and the total number of 

samples harbouring mutations in any gene belonging to the pathway under consideration. See also 

Figure 6. 
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Supplementary Figures S10: Hallmark signature analysis to discover new cancer driver networks. 
In each row, first circle plots shows pathway enrichments at the population levels when considering all 

the somatic variants (bars on the external circle) and when considering only variants not involving 

known high-confidence cancer driver genes; second circle plot shows similarly a comparison between 

the hallmark signatures resulting from SLAPenrich analysis including (bars on the external circle) or 
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excluding (bars on the internal circle) the variants involving known high-confidence cancer genes. The 

bar plot shows a comparison, in terms of true-positive-rate (TPR) and positive-predicted-value (PPV), 

of the SLAPenriched pathways across the two analysis and, finally, the scatter plots on the right shows 

a comparison between the resulting hallmark signatures. 
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Supplementary Note 

Overview of the exposed functions in the SLAPenrich R package 
SLAPenrich is implemented as an open-source Bioconductor R-package and it is public 

available on GitHub (at https://github.com/saezlab/SLAPenrich/). It contains seven exposed 

functions available to the user, nine internal functions and two data objects. 

The referenced equations are contained in the formal description of the statistical framework 

underlying SLAPenrich, contained in the Methods section of the main text.  

 

Input/Output 
Of the thirteen exposed functions, two are for data input/output: the first one, 

 
SLAPE.readDataset(filename), 

 

reads a dataset stored in a .csv file as a sparse binary matrix; the second one, 
 

SLAPE.write.table(PFP,EM,filename='', fdrth=Inf,exclcovth=0, PATH_COLLECTION, 

GeneLenghts), 

 

extracts from the PFP (pathway fingerprints) object (outputted by the SLAPE.analysis function, 

see below) the subset of pathways (from the collection specified in the pathway collection specified 

in PATH_COLLECTION) whose enrichment false discovery rate is below the threshold specified in the 

parameter fdrth and whose exclusive coverage (see methods) is above the threshold specified in 

the parameter exclcovth. The extracted enriched pathways are then assembled and written in the 

csv file specified in the parameter filename, together with other information such as, for example, 

the percentage of altered samples of the initial dataset (specified in the matrix EM) when considering 

individual genes in a given pathway, and total exonic block lengths of the enriched pathways 

(extracted from the data object specified in GeneLenghts). 

 

Core analysis 
The core analysis function implementing the statistical framework described in the methods section 

is  
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SLAPE.analyse(EM, show_progress=TRUE, correctionMethod='fdr', NSAMPLES=1, 

NGENES=1, accExLength=TRUE, BACKGROUNDpopulation=NULL, PATH_COLLECTION, 

path_probability='Bernoulli', Rho=10^-6,GeneLenghts) 

 

This function takes in input a dataset (the parameter EM) stored in a sparse binary matrix, or a sparse 

matrix with integer non-null entries. In this matrix the columns correspond to samples, the rows 

correspond to genes and a non-zero entry indicates the presence of a somatic mutations harbored 

by a given sample in a given gene. If the matrix contains integer entries then they are deemed as 

the number of somatic point mutations harbored by a given sample in a given gene (these values 

will be considered to account for the sample mutation rate if the analysis takes into account of the 

gene exonic lengths, or converted in binary values otherwise, see below). 

For each pathway gene-set 𝑃  in the pathway collection specified in the parameter 

PATH_COLLECTION, and an inputted genomic dataset (summarized by the parameter EM), this 

function computes first of all a vector of probabilities 𝜋 = {𝑝D} quantifying how likely each sample 

is to harbor at least one somatic mutation in a gene belonging to 𝑃, by random chance. 

These probabilities are computed by default using a Bernoulli model accounting for the total exonic 

block lengths of all the genes belonging to 𝑃, and the expected or observed background mutation 

rate (Equation 5) [1,2] (as specified by the parameter Rho, which in the second case should be set 

equal to NULL). Alternatively, these probabilities can be computed through a complementary 

cumulative hypergeometric distribution evaluated at 𝑋 = 0 and taking into account of the mutation 

burden of the samples, the size of 𝑃  in terms of number of genes (Equations 2 and 3, and 

accExLength = FALSE), or its total exonic content block length (AF Equation 4 and accExLength 

= TRUE, the default setting). In all the tests make use of a gene background population that can be 

defined by the user (through the parameter BACKGROUNDpopulation) or assembled pooling together 

all the genes belonging to at least one pathway of the collection specified in PATH_COLLECTION. 

After 𝜋 has been computed, this function computes a pathway alteration score at the population 

level, quantifying the deviance of the number of samples in the datasets harbouring at least a 

somatic mutation in at least one gene of 𝑃, 𝑂(𝑃) (Equation 7) from its random expectation 𝐸(𝑃) 

(Equation 6, which is computed summing the {𝑝D} across all the samples). Finally, it computes the 

significance of this score with a p-value against the null hypothesis: “𝑂(𝑃) is drawn from a Poisson 

binomial distribution with {𝑝D}  success probabilities” (Equation 9). This comes from the 

observation that if there is no tendency for a given pathway to be recurrently mutated across 𝑚 

samples of the datasets, then each of these samples can be considered as the observation of a single 

Bernoulli trial (in a series of 𝑚 of them), where the event under consideration in the 𝑖-th trial is “At 
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least one gene belonging to 𝑃 is mutated in the 𝑖-th sample”. The success probability of this event 

is given by 𝑝D. Worthy of note is that a Poisson binomial distribution should be considered instead 

of a simple binomial distribution because the 𝑝D are, of course, not identical. 

After alteration scores and corresponding significance have been assessed for all the pathways 

considered in the analysis, resulting p-values are corrected for multiple hypothesis testing with a 

user-defined method, specified by the parameter correctionMethod. Possible values for this 

parameter are all the admissible values of the parameter method in the built-in function p.adjust 

of R, plus qvalue through which the user can select the Storey-Tibshirani [3,4] correction method. 

Through the parameters NSAMPLES and NGENES the minimal values that the number of samples 

harbouring a mutation in the pathway 𝑃, and the number of genes in 𝑃 mutated in at least one 

sample should assume in order for 𝑃 to be included in the analysis can be specified, respectively. 

The default value for these two parameters is 1. 

As mentioned, the two parameters accExLength and BACKGROUNDpopulation specify whether 

the gene exonic lengths should be taken into account while defining the probabilities {𝑝D} described 

above, and the collection of official symbols of the genes that should be included in the background 

population in the used statistical framework, respectively. If the value of accExLength is TRUE 

(default) then the non-null values of the matrix coding for the inputted dataset (EM) are deemed to 

indicate the number of somatic point mutations harbored by a given gene in a give sample. 

BACKGROUNDpopulation could be, for example, all the genes whose mutational status is accounted 

in the inputted dataset EM. If the value of BACKGROUNDpopulation is NULL (default) then the set of 

all the genes included in at least one pathway of the collection included in the analysis is used as 

background population. 

Finally, the parameter show_progress determines if a progress bar should be visualized during the 

execution of the analysis. 

 

For an inputted dataset of 𝑚 samples and a collection of 𝑝 pathways included in the analysis, 

SLAPE.Analyse outputs also (i) a 𝑝	 × 	𝑚 binary pathway alteration matrix where rows indicate 

pathways, columns indicate samples and non-null entries indicate the presence of at least a somatic 

mutation in at least one gene of a given pathway in a given sample; (ii) a 𝑝	 × 	𝑚 pathway mutation 

probability matrix, where the 𝑗-th row contains the vector of probabilities O𝑝P,DQ of the 𝑖-th sample 

harboring at least a somatic mutation in at least one gene of the 𝑗-th pathway, by random chance; 

(iii) a vector of pathway alteration expectations (with an element for each pathway) with an 

estimation of the expected number of samples harbouring at least one somatic mutation in at least 

on gene of a given analysed pathway; (iv) a vector of pathway exclusive coverage scores 
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quantifying the tendency of the genes composing each of the analysed pathway to be mutated in a 

mutual exclusive fashion; (v) a list of individual binary pathway alteration matrices (one for each 

analysed pathway), where the generic matrix 𝑀D has dimensions 𝑘	 × 	𝑚, where 𝑘 is the number of 

genes in the 𝑖-th pathway, 𝑚 is the number of samples in the analysed dataset and a generic non-

null entry in position ℎ, 𝑗 is equal to 1 if the h-th gene of the i-th pathway of the analyzed collection 

harbors at least one somatic mutation in the j-th sample; (vi) a vector of numerical pathway 

identifiers. 

 

Visualisation 
Storing the results outputted by the SLAPE.Analyse function in a list, it is possible to visualize 

them systematically and to produce pdf files with resulting plots using the function 

 

SLAPE.serialPathVis(EM, PFP, fdrth=5, exCovTh=50, PATH='./', PATH_COLLECTION). 

 

This function extracts from the list of results outputted by SLAPE.Analyse (specified by the PFP 

parameter) those pathways (from the collection specified by the parameter PATH_COLLECTION) with 

an enrichment false discovery rate (FDR) below the user defined threshold value specified by the 

parameter fdrth, and with an exclusive coverage score (Equation 12) above the threshold value 

specified by the parameter exCovTh. All the figures produced by this function are stored in the 

directory specified by the parameter PATH. 

After selecting the pathways following the user definitions, this function systematically calls for 

each of them (distinguished by their numerical identifier, Id) the sub-routine: 
 

SLAPE.pathVis(EM, PFP, Id, i=NULL,PATH='./', PATH_COLLECTION). 

 

Before producing the plots, SLAPE.pathVis rearranges rows and columns of the alteration matrix 

of the Id pathway through a heuristic mutual-exclusivity sorting procedure (detailed in the method), 

which highlights the tendency of the composing genes to be mutated in a mutual exclusive fashion 

across the samples of the analyzed dataset. This sorting is implemented in the function  

 

SLAPE.heuristic_mut_ex_sorting(EM), 

 

which is exported, therefore available to the user and suitable for sorting any type of binary matrix. 

After this re-arrangement the alteration matrix of the Id pathway is visualized and stored in a pdf 
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file as a binary heatmap with genes on the rows, samples on the columns, and blue entries indicating 

the presence of somatic mutations in given gene/sample combinations (an example is reported in 

Supplementary Figure S1A). Additionally, mutation probabilities and alteration expectations are 

visualized and saved as bar diagrams, together with other statistical scores in a separate figure file. 

 

 

Extraction of core-components from the enriched pathways 
 

The function 

 
SLAPE.core_components(PFP, EM, PATH='./', 

fdrth=Inf, exclcovth=0, PATH_COLLECTION), 

 

identifies sets of core-components genes frequently altered and shared by multiple enriched 

pathways identified by the SLAPE.Analyse function (and specified in PFP). These core-component 

gene sets are supposed to lead the enrichment outcomes. To detect such core components, the 

function executes a fast greedy community detection algorithm [5,6], implemented in the 

fastgreedy.community function of the iGraph package [7-9]. The analysis performed by this 

function considers only enrichments at a false discovery rate lower than the threshold value 

specified in the parameter fdrth and corresponding to pathways with an exclusive coverage 

greater than the threshold value specified in the parameter exclcovth. After these core-component 

gene-sets have been identified, this function visualizes them together with the pathways they belong 

to through a set of membership matrices: binary heatmaps with pathways on the columns, a set of 

core-component genes on the rows and non-empty entries specifying to which enriched pathway 

each gene belongs to (an example is provided in  Supplementary Figure S1B). These heatmaps are 

stored in individual pdf files and saved in the directory specified by the PATH parameter. 

 

 

Differential pathway enrichment analysis 
 

The function 
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SLAPE.diff_SLAPE_analysis (EM, contrastMatrix, positiveCondition, 

negativeCondition, SLAPE.FDRth=5, ...) 

 

performs a differential enrichment analysis of pathway alterations at the sample population level 

between two sample subsets of dataset specified in the parameter EM (defined as for the previous 

function). The parameter contrastMatrix specifies which samples are included in each sub-

population and it is a binary matrix with sample identifiers on the rows and condition identifiers on 

the columns. The sample identifiers should match those of the initial datasets, i.e. the column 

headers of the EM matrix. A 1 in the position 𝑖, 𝑗 of such a matrix indicates that the i-th sample is 

included in the sub-population corresponding to the j-th condition. 

The two sub-populations to be contrasted are specified by the parameters positiveCondition and 

negativeCondition that should match two different column headers of the contrastMatrix. This 

function first performs two independent SLAPenrich analyses on the two user-defined sub-

populations of samples with an experimental setting specified by the additional parameters (not 

listed in the function signature above), which are the same of the SLAPE.analyse function. Then it 

selects the pathways with an enrichment FDR smaller than the value specified in the 

SLAPE.FDRth=5 in at least one of the two independent analyses. For this set of pathways a 

differential enrichment score is computed, as detailed in the method, and summary heatmaps are 

visualised, as shown in Supplementary Figure S1C. 

 

Accessory functions and data objects 
 

The SLAPenrich package contains additional exposed functions allowing users to: 

• check the consistency of (and possibly update the) gene symbol identifiers in both genomic 

datasets and pathway collection data object with the Hugo gene nomenclature (HGNC) 

catalogue, including approved gene symbols and previously used synonyms, contained in 

the SLAPE.hgnc.table_20160210 data object;  

• update or create a new HGNC catalogue, by downloading the most up-to-date version from 

the HUGO Gene Nomenclature Committee web-site (www.genenames.org); 

• compute the total length of the exonic block of a given gene, making use of the gene exon 

attribute data object SLAPE.all_genes_exonic_lengths_ensemble_20160209, 

containing the genomic coordinates of all the exons for all the genes (the genome-wide 

total exonic block lengths are already precomputed and available in the 
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SLAPE.all_genes_exonic_content_block_lengths_ensemble_20160209 data object, 

and can be updated with a dedicated function); 

• update the gene exon attribute data object, by making use of functions from the biomaRt 

R package [10-12]. 

 

Additionally, different collections of pathway gene sets from the Pathway Commons data portal 

(v4-201311) [7,9,13-16], and their post-processed versions computed as detailed in the methods to 

reduce redundancies are embedded in the package as R objects. These objects contain, for each 

pathway, multiple information such as uniprot identifiers of the composing genes, official data 

source, and pathway title/definition. 

Finally the genomic datasets and corresponding patient clinical information used in the case study 

described in the following sections are also provided as R objects. 
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