
Appendix: Multi-model inference of mate choice effects from an 

information theoretic approach  

 

  



S-1) Mutual Mating Propensity Models 

SEXUAL SELECTION MODELS 

Female sexual selection 

The model is q'ij = mijqij with 

m'11= m'12 = ... = m'1k2 = a1 

m'21= m'22 = ... = m'2k2 = a2  

. 

. 

. 

m'(k1-1)1= m'k12 = ... = m'k1k2 = ak1-1 

m'k11= m'k12 = ... = m'k1k2 = 1   (A1) 

and restriction ai > 0  i. 

Note that the relationships among the propensities will not be altered if we divide by ak1 

so that we have fixed ak1 = 1. Thus, under female sexual selection models we can 

consider H1 ∊ [1, k1 – 1] different parameters. 

The normalization factor is the mean propensity M = ∑ m'ijqij. Now, if we compute the 

marginal female and male propensities we see that 

 mFem_1 = a1/M; mFem_2 = a2/M ...; mFem_k1 = 1/M 

 mMale_1 = mMale_2 = mMale_3 =... = mMale_k2 = M/M = 1 

Thus, the model just depends on the parameters ai. Let the number of different 

parameters be H1 = k1 - 1. By derivation of (A1), equating to zero and checking it is a 

maximum, we obtain the maximum likelihood estimate of the parameter ah  



      
      

  
 

   
 

    
   

       
   

  
 

 
     

    
  

λ(θ) is defined in general for any set A of mating pair types having the same value of 

propensity θ as 

     
   

 
 

         
 
    

  (A2) 

So, λ(ah) expresses the sum of the observed matings having expected propensity ah 

divided by the sum of the product of the population frequencies from each partner type. 

 In the particular case of having k1 - 1 parameters then the observed matings with 

propensity ah are just Σxhj with the sum over all male types. The sum of the product of 

frequencies is Σp1h × p2j = p1h Σ p2j = p1h. 

In the opposite case, having only one parameter the sum of observed matings having 

propensity a, implies ΣΣxhj where the first summatory is for all the female types except 

females of type k1, and the second is over all male types. The sum of the product of 

frequencies is  1 - p1k1. 

Similarly, λ(1) corresponds to the sum of the observed matings having expected 

propensity 1 divided by the sum of the corresponding products of population 

frequencies. 

The general case for any parameter ah, 1 ≤ h < k1, is expressed as λ(ah) applying (A2). 

Therefore, for any given number of parameters H1, the maximum likelihood estimate of 

the parameters under the female sexual selection models is   

    
     

    
   

 



SEXUAL ISOLATION MODELS 

We could define sexual isolation models in which the homotype mating has absolute 

propensity of 1 while the different heterotypes have absolute value of aij. The maximum 

likelihood estimate is  

       
        

    
   

The number of parameters in this type of model is K – min{k1, k2} – ΣS(Cs-1) where the 

sum is over the set of different heterotype matings and Cs is the cardinality of each set.  

  

DOUBLE EFFECT MODELS 

The following models have double effect even when the population frequencies are 

uniform. 

 Double effect models with sexual selection in one sex under uniform frequencies 

The simplest approach consists to built a new model from the symmetric one by setting 

m'ii = 1 and m'jj = 1 +c. Then, if we desire isolation jointly with sexual selection only in 

females we additionally set m'ij = 1 - c on the contrary, if we desire selection only in 

males we set m'ji = 1 – c with -1 < c < 1. If the frequencies are not uniform the model 

generates isolation jointly with sexual selection in both sexes.  

In the case of the mixed model with m'ij = 1 - c (female sexual selection if frequencies 

are uniform) the maximum likelihood estimate of c is one of the roots of the quadratic 

 (xjj - xij + n'D ) - c[xij + xjj + D(xjj - xij)] - c
2
D[n' - (xij +xjj)] = 0 

where D = qij - qjj and n' = ∑xij is the number of matings (sample size).  



If the frequencies are uniform and k1 = k2,  i.e. p1i = p1j = p2i = p2j Ɐ i, j then  

   
       

       
   

The case for male sexual selection is obtained simply by interchanging xij by xji and qij 

by qji in the formulas. 

The above model has only one parameter c; we can introduce a more complex two 

parameter model, M(a,c) by setting m'ii = a, m'jj = 1 +c and m'ij = 1 - c, for female sexual 

selection (or m'ji = 1 - c for male sexual selection). For obtaining the MLE of this two 

parameter mixed model, with restrictions a > 0, c < |1|, we have used a numerical  

bounded Nelder-Mead simplex algorithm (Press 2002; Singer and Singer 2004; Gao and 

Han 2012). 

 

Double effect models with sexual selection in both sexes under uniform frequencies 

To get isolation jointly with sexual selection in both sexes under uniform frequencies, 

we just need to combine the above uniform one parameter models of each sex, so that 

 m'ii = 1,  m'jj = 1 +c and m'ij = m'ji = 1 - c. 

The maximum likelihood estimate of c involves the solution of the quadratic  

 [xjj – xs + n'D2 ] - c[xjj + xs + D2(xjj - xs)] + c
2
D2[xjj + xs - n'] = 0   

where xs = xij + xji and D2 = qij + qji –qjj.  

However, we can set even a more simplistic mixed model with sexual selection in both 

sexes, m'ii = m'ij = m'ji = 1 and m'jj = a. The estimate of a under this model is λ(a) / λ(1). 

 



General double effect models 

We can also define a set of general models where any propensity m'ij has parameter ij 

with at least one propensity having value of 1. The MLE of the parameters of this kind 

of model is 

     
      

    
   

where λ(ij) is defined as in (A2). 

The most parameterized model defined in this way has K-1 parameters and coincides 

with the saturated model so that the estimates are the corresponding pair total indices 

(PTI). 

All the above derived MLE formulae have also been checked by a numerical bounded 

Nelder-Mead simplex algorithm (Press 2002; Singer and Singer 2004; Gao and Han 

2012). The set of described models jointly with their effects are summarized in Table 

S1. 

 

Table S1. Propensity-based mating models for any number of mating traits k1 and k2, as 

defined by different parameters and their effects  

Name (abbreviation) Model  Number of 

Parameters and 

MLE 

Effect 

    

Random (M0) m'ij = 1 0 Random mating 

    

Multiplicative Sexual Selection Models    

Female sexual selection (SFem-1P, -2P...) i < k1: m'ij = m'ij+1 = 

…= m'ik2 = ai > 0 
[1 , k1 - 1]      Non-freq-dep 

sexual selection in 



else m'k1j = 1 females 

  ai =λ(ai) /λ(1)  

Male sexual selection (SMale-1P, -2P...) j < k2: m'ij = m'i+1j = 

…= m'k1j = bj > 0 

else m'ik2 = 1 

[1, k2 - 1] 

 

Non-freq-dep 

sexual selection in 

males 

  bi =λ(bi) /λ(1)  

Two sex sexual selection (S2-2P, ...) combine female 

and male sexual 

selection models: 

[2, k1+k2 - 2]  

 

Non-freq-dep 

sexual selection in 

both sexes 

 i < k1 and j < k2: 

m'ij = aibj else  
 

 

 i < k1: m'ik2 = ai 

else   
ai =λfem(ai) /λfem(1) 

 

 j < k2: m'k1j = bj 

else m'k1k2 = 1 
bi =λmale(bi)/λmale(1) 

 

    

Sexual Isolation Models  non-multiplicative  Isolation freq-dep 

Symmetric sexual isolation (I-1p) m'ii = a > 0 i and 

m'ij = 1 
1  

Isolation UF 

Full sexual isolation (I-Hp) m'ii = ai > 0; m'ij = 

1 

H =min(k1, k2)       

ai =λ(ai) /λ(1) 

Isolation freq-dep 

    

Double effect Models: uniform 

frequencies  

 
 

Isolation + sexual 

selection under UF  

Double-1: Isolation + one sex selection 

(DFem-c1p), (DMale-c1p)  

m'ii = 1; m'jj = 1+c;  
1 

Isolation + 1 sex 

selection UF 

 m'ij or m'ji = 1 - c; 

|c|<1 
c=(xjj-xij)/(xjj+xij)  

 

Double -1: Isolation + two sex selection 

(D2-c1p) 

m'ii = 1; m'jj = 1+c;  
1 

Isolation  + 2 sex 

selection UF 

 m'ij = m'ji = 1 - c; 

|c|<1 
Ac

2
 + Bc + D =0 

 

    

Double -2: Isolation + one sex selection 

(DFem-c2p), (DMale-c2p) 

m'ii = a; m'jj = 1+c;  
2 

Isolation  + one sex 

selection UF 

 m'ij or m'ji = 1 - c; 

|c|<1; a > 0 
numerical 

 

    

General Double EffectModels (D-gp)  g ∊ [|1, K-1] Isolation+Sex Sel 



  ai =λ(ai) /λ(1)  

Saturated (Msat) m'ij = aij; m'k1k2 = 1 K - 1  

    

k1: number of female categories; k2: number of male categories; UF: under uniform frequencies; K= k1 × 

k2; xij: number of matings ij. 

 

S-2) Monte Carlo simulation of mating tables 

MODELS 

Relying on the mutual mating propensity parameters we can generate various effects 

models (see some examples in Table S1 and Fig S1) and produce distinct mating tables 

under these models.  



 

Fig. S1. Mating models as defined by their effects. A: The saturated model with K-1 free 

parameters; this model produces double effect of sexual isolation plus sexual selection. B: One-

parameter model generating only sexual isolation (intersexual selection), or with sexual 

selection, depending if the frequencies are uniform or not. C: One-parameter model producing 

female selection model. D: One-parameter model producing male selection model. The ML 

estimates in C and D are obtained by the same formula as in B. 

 

MATING TABLES 

The mating tables for the simulation experiments were generated by the program 

MateSim (Carvajal-Rodriguez 2018) available at  

http://acraaj.webs.uvigo.es/MateSim/matesim.htm.  



We ran 1,000 runs for each case. For each run we first generated the number of 

premating males and females from a given population size. For example, if the 

population size consisted in n1 females and n2 males, we got n1A = n1  U females of the 

A type and n1B = n1 - n1A females of the B type. Where U is a value sampled from the 

standard uniform. The premating males were obtained similarly. 

Then, the female population frequencies were p1i = n1i / n1 and p2i = n2i / n2 for the male 

ones. 

Finally, we obtained a sample of n' matings where the number of counts for each mating 

type i  j was  

  Q(i,j) = n'  p1i  p2j  m'ij  / M 

where m'ij are the mating propensity parameters as defined for each kind of model and 

M = ∑ p1i  p2j  m'ij. 

The format of the obtained tables was the same as the JMating (Carvajal-Rodriguez and 

Rolan-Alvarez 2006) input files (Fig S2). 

 



Fig. S2. Example of a table generated by the simulations. The format is the same as for the 

JMating software.   

 

Table S2. Average (standard error) parameter estimates for different simulated 

models under sample size 100.  

Model  m'11 m'12 m21 m22 

      

M0 Expected 1 1 1 1 

 AICc 1.0±0.000 1.0±0.000 1.0±0.000 1.0±0.000 

 KICc 1.0±0.000 1.0±0.000 1.0±0.000 1.0±0.000 

 BIC 1.0±0.000 1.0±0.000 1.0±0.000 1.0±0.000 

Isol Expected 2 1 1 2 

 AICc 2.0±0.005 1.2±0.148 1.0±0.001 2.1±0.028 

 KICc 2.0±0.005 1.1±0.108 1.0±0.001 2.1±0.023 

 BIC 2.0±0.008 1.0±0.000 1.0±0.000 2.1±0.007 

SSFem Expected 2 2 1 1 

 AICc 1.8±0.094 1.8±0.142 1.0±0.043 1.0±0.013 

 KICc 1.7±0.164 1.6±0.209 1.1±0.068 1.0±0.014 

 BIC 1.5±0.217 1.4±0.209 1.1±0.083 1.0±0.0157 

SSFemU   Expected 2 2 1 1 



 AICc 2.0±0.000 2.0±0.000 1.0±0.000 1.0±0.000 

 KICc 2.0±0.000 2.0±0.000 1.0±0.000 1.0±0.000 

 BIC 2.0±0.000 2.0±0.000 1.0±0.000 1.0±0.000 

M0: Random mating model. Isol: isolation model; SSFem: Female sexual selection model. SSFemU: Female 

sexual selection model with uniformly distributed population frequencies p1i=1/k1 and p2j = 1/k2. 

 

Table S3. Littorina saxatilis data. Mutual-propensity estimates from multimodel 

inference under the KICc. Values are the average over the two years plus minus the 

standard error.  

   Males  

  RB HY SU 

 RB 1.8±0.17 1.6±0.32 0.6±0.30 

Females HY 0.6±0.30 1.1±0.70 1±0 

 SU 0.16±0.01 0.6±0.30 1.5±0.30 

 

Table S4. Littorina saxatilis data. Mutual-propensity estimates from multimodel 

inference under the BIC. Values are the average over the two years plus minus the 

standard error.  

   Males  

  RB HY SU 



 RB 1.9±0.10 1.5±0.32 0.6±0.29 

Females HY 0.6±0.29 1.1±0.61 1±0 

 SU 0.18±0.00 0.6±0.29 1.5±0.30 

 

 

S-3) Example 

 

Fig. S3. Input file for the Littorina saxatilis example (year 1999, data kindly provided by E. 

Rolán-Alvarez). The format is the same as for the JMating software. 
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