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Full Model Comparison
We report the full model comparison of 27 models, of which 12 (i.e., four learning models and three
sampling strategies) are included in the main text. We use different Models of Learning (i.e., Function
Learning and Option Learning), which combined with a Sampling Strategy can make predictions about
where a participant will search, given the history of previous observations. We also include comparisons
to Simple Heuristic Strategies, which make predictions about search decisions without maintaining a
representation of the world (i.e., without a learning model). Table S2 shows the predictive accuracy, the
number of participants best described, and the median parameter estimates of each model. Figure S1
shows a more detailed assessment of predictive accuracy, with participants separated by payoff condition
and environment type.

Models of Learning
Function Learning. The Function Learning Model adaptively learns an underlying function mapping
spatial locations onto rewards. We use Gaussian Process (GP) regression as a Bayesian method of function
learning40. A GP is defined as a collection of points, any subset of which is multivariate Gaussian. Let
f : X ! Rn denote a function over input space X that maps to real-valued scalar outputs. This function
can be modelled as a random draw from a GP:

f ⇠ GP(m,k), (6)

where m is a mean function specifying the expected output of the function given input x, and k is a kernel
(or covariance) function specifying the covariance between outputs.

m(x) = E[ f (x)] (7)
k(x,x0) = E

⇥
( f (x)�m(x))( f (x0)�m(x0))

⇤
(8)

Here, we fix the prior mean to the median value of payoffs, m(x) = 50 and use the kernel function
to encode an inductive bias about the expected spatial correlations between rewards (see Radial Basis
Function kernel). Conditional on observed data Dt = {x j,y j}t

j=1, where y j ⇠N ( f (x j),s2) is drawn from
the underlying function with added noise s2 = 1, we can calculate the posterior predictive distribution for
a new input x⇤ as a Gaussian with mean mt(x⇤) and variance vt(x⇤) given by:

E[ f (x⇤)|Dt ] = mt(x⇤) = k>
⇤ (K+s2I)�1yt (9)

V[ f (x⇤)|Dt ] = vt(x⇤) = k(x⇤,x⇤)�k>
? (K+s2I)�1k⇤, (10)

where y = [y1, . . . ,yt ]>, K is the t ⇥ t covariance matrix evaluated at each pair of observed inputs, and
k⇤ = [k(x1,x⇤), . . . ,k(xt ,x⇤)] is the covariance between each observed input and the new input x⇤.

We use the Radial Basis Function (RBF) kernel as a component of the GP function learning algorithm,
which specifies the correlation between inputs.

k(x,x0) = exp
✓
� ||x�x0||2

l

◆
(11)

This kernel defines a universal function learning engine based on the principles of Bayesian regression
and can model any stationary function‡. Intuitively, the RBF kernel models the correlation between points

‡Note, sometimes the RBF kernel is specified as k(x,x0) = exp
⇣
� ||x�x0||2

2l2

⌘
whereas we use l = 2l2 as a more psychologi-

cally interpretable formulation.
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as an exponentially decreasing function of their distance. Here, l modifies the rate of correlation decay,
with larger l -values corresponding to slower decays, stronger spatial correlations, and smoother functions.
As l !+•, the RBF kernel assumes functions approaching linearity, whereas as l ! 0, there ceases to
be any spatial correlation, with the implication that learning happens independently for each input without
generalization (similar to traditional models of associative learning). We treat l as a hyper-parameter, and
use cross-validated estimates to make inferences about the extent to which participants generalize.

Option Learning. The Option Learning Model uses a Bayesian Mean Tracker (BMT), which is a type of
associative learning model that assumes the average reward associated with each option is constant over
time (i.e., no temporal dynamics, as opposed to the assumptions of a Kalman filter or Temporal Difference
Learning)6, as is the case in our experimental search tasks. In contrast to the Function Learning model,
the Option Learning model learns the rewards of each option separately, by computing an independent
posterior distribution for the mean µ j for each option j. We implement a version that assumes rewards are
normally distributed (as in the GP Function Learning Model), with a known variance but unknown mean,
where the prior distribution of the mean is again a normal distribution. This implies that the posterior
distribution for each mean is also a normal distribution:

p(µ j,t |Dt�1) =N (m j,t ,v j,t) (12)

For a given option j, the posterior mean m j,t and variance v j,t are only updated when it has been selected
at trial t:

m j,t = m j,t�1 +d j,tG j,t
⇥
yt �m j,t�1

⇤
(13)

v j,t =
⇥
1�d j,tG j,t

⇤
v j,t�1 (14)

where d j,t = 1 if option j was chosen on trial t, and 0 otherwise. Additionally, yt is the observed reward at
trial t, and G j,t is defined as:

G j,t =
v j,t�1

v j,t�1 +q 2
e

(15)

where q 2
e is the error variance, which is estimated as a free parameter. Intuitively, the estimated mean

of the chosen option m j,t is updated based on the difference between the observed value yt and the prior
expected mean m j,t�1, multiplied by G j,t . At the same time, the estimated variance v j,t is reduced by a
factor of 1�G j,t , which is in the range [0,1]. The error variance (q 2

e ) can be interpreted as an inverse
sensitivity, where smaller values result in more substantial updates to the mean m j,t , and larger reductions
of uncertainty v j,t . We set the prior mean to the median value of payoffs m j,0 = 50 and the prior variance
v j,0 = 500.

Sampling Strategies

Given the normally distributed posteriors of the expected rewards, which have mean mt(x) and the
estimated uncertainty (estimated here as a standard deviation) st(x) =

p
vt(x), for each search option

x (for the Option Learning model, we let mt(x) = m j,t and vt(x) = v j,t , where j is the index of the
option characterized by x), we assess different sampling strategies that (with a softmax choice rule) make
probabilistic predictions about where participants search next at time t +1.
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Upper Confidence Bound Sampling. Given the posterior predictive mean mt(x) and the estimated
uncertainty st(x), we calculate the upper confidence bound (UCB) using a simple weighted sum

UCB(x) = mt(x)+b st(x), (16)

where the exploration factor b determines how much reduction of uncertainty is valued (relative to
exploiting known high-value options) and is estimated as a free parameter.

Pure Exploitation and Pure Exploration. Upper Confidence Bound sampling can be decomposed into
a Pure Exploitation component, which only samples options with high expected rewards, and a Pure
Exploration component, which only samples options with high uncertainty.

PureExploit(x) = mt(x) (17)
PureExplore(x) = st(x) (18)

Expected Improvement. At any point in time t, the best observed outcome can be described as x+ =
argmaxxi2x1:t mt(xi). Expected Improvement (EXI) evaluates each option by how much (in the expectation)
it promises to be better than the best observed outcome x+:

EXI(x) =

(
F(Z)(mt(x)�mt(x+))+ st(x)f(Z), if st(x)> 0
0, if st(x) = 0

(19)

where F(·) is the normal CDF, f(·) is the normal PDF, and Z = (mt(x)�mt(x+))/st(x).

Probability of Improvement. The Probability of Improvement (POI) strategy evaluates an option based
on how likely it will be better than the best outcome (x+) observed so far:

POI(x) = P
�

f (x)� f (x+)
�

= F
✓

mt(x)�mt(x+)
st(x)

◆
(20)

Probability of Maximum Utility. The Probability of Maximum Utility (PMU) samples each option
according to the probability that it results in the highest reward of all options in a particular context6. It
is a form of probability matching and can be implemented by sampling from each option’s predictive
distribution once, and then choosing the option with the highest sampled payoff.

PMU(x) = P
�

f (x j)> f (xi6= j)
�

(21)

We implement this sampling strategy by Monte Carlo sampling from the posterior predictive distri-
bution of a learning model for each option, and evaluating how often a given option turns out to be the
maximum over 1,000 generated samples.

Simple Heuristic Strategies

We also compare various simple heuristic strategies that make predictions about search behaviour without
learning about the distribution of rewards.
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Experiment 2
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Experiment 3

Simple StrategiesOption Learning Option Learning* Function Learning Function Learning*

Simple StrategiesOption Learning Option Learning* Function Learning Function Learning*

Rough Smooth/Natural Rough Smooth/NaturalAccumulators Maximizers

Function Learning
Function Learning*
Other

Participants 
best described

Participants 
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Figure S1. Full model comparison of all 27 models. The learning model is indicated above (or lack of in the case
of simple heuristic strategies), and sampling strategy are along the x-axis. Bars indicate predictive accuracy (group
mean) along with standard error, and are separated by payoff condition (colour) and environment type (darkness),
with individual participants overlaid as dots. Icon arrays (right) show the number participants best described (out of
the full 27 models) and are aggregated over payoff conditions, environment types, and sampling strategy. Table S2
provides more detail about the number of participants best described by each model.

Win-Stay Lose-Sample. We consider a form of a win-stay lose-sample (WSLS) heuristic58, where a win
is defined as finding a payoff with a higher or equal value than the previously best observed outcome.
When the decision-maker “wins”, we assume that any tile with a Manhattan distance  1 is chosen (i.e., a
repeat or any of the four cardinal neighbours) with equal probability. Losing is defined as the failure to
improve, and results in sampling any unrevealed tile with equal probability.
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Local Search. Local search predicts that search decisions have a tendency to stay local to the previous
choice. We use inverse Manhattan distance (IMD) to quantify locality:

IMD(x,x0) = 1
Ân

i=1 |xi � x0i|
(22)

where x and x0 are vectors in Rn. For the special case where x = x0, we set IMD(x,x0) = 1.

Localization of Models

With the exception of the Local Search model, all other models include a localized variant, which
introduced a locality bias by weighting the predicted value of each option q(x) by the inverse Manhattan
distance (IMD) to the previously revealed tile. This is equivalent to a multiplicative combination with
the Local Search model, similar to a “stickiness parameter”59, 60, although we implement it here without
the introduction of any additional free parameters. Localized models are indicated with an asterisk (e.g.,
Function Learning*).

Model Comparison
We use maximum likelihood estimation (MLE) for parameter estimation, and cross-validation to measure
out-of-sample predictive accuracy. A softmax choice rule transforms each model’s prediction into a
probability distribution over options:

p(x) = exp(q(x)/t)
ÂN

j=1 exp(q(x j)/t)
, (23)

where q(x) is the predicted value of each option x for a given model (e.g., q(x) = UCB(x) for the UCB
model), and t is the temperature parameter. Lower values of t indicate more concentrated probability
distributions, corresponding to more precise predictions. All models include t as a free parameter.
Additionally, Function Learning models estimate l (length-scale), Option Learning models estimate q 2

e
(error variance), and Upper Confidence Bound sampling models estimate b (exploration bonus).

Cross Validation. We fit all models—per participant—using cross-validated MLE, with either a Differ-
ential Evolution algorithm61 or a grid search if the model contained only a single parameter. Parameter
estimates are constrained to positive values in the range [exp(�5),exp(5)]. Cross-validation is performed
by first separating participant data according to horizon length, which alternated between rounds within
subject. For each participant, half of the rounds corresponded to a short horizon and the other half corre-
sponded to a long horizon. Within all rounds of each horizon length, we use leave-one-out cross-validation
to iteratively form a training set by leaving out a single round, computing a MLE on the training set, and
then generating out-of-sample predictions on the remaining round. This is repeated for all combinations of
training set and test set, and for both short and long horizon sets. The cross-validation procedure yielded
one set of parameter estimates per round, per participant, and out-of-sample predictions for 120 choices in
Experiment 1 and 240 choices in Experiments 2 and 3 (per participant).

Predictive Accuracy. Prediction error (computed as log loss) is summed up over all rounds, and is
reported as predictive accuracy, using a pseudo-R2 measure that compares the total log loss prediction
error for each model to that of a random model:

R2 = 1� logL(Mk)

logL(Mrand)
, (24)

22/36



where logL(Mrand) is the log loss of a random model (i.e., picking options with equal probability) and
logL(Mk) is the log loss of model k’s out-of-sample prediction error. Intuitively, R2 = 0 corresponds
to prediction accuracy equivalent to chance, while R2 = 1 corresponds to theoretical perfect prediction
accuracy, since logL(Mk)/ logL(Mrand)! 0 when logL(Mk)⌧ logL(Mrand).

Natural Environments
The natural environments used in Experiment 3 were compiled from various agricultural datasets35, 62–74

(Table S1), where payoffs correspond to normalized crop yield (by weight), and the rows and columns
of the 11x11 grid correspond to the rows and columns of a field. Because agricultural data is naturally
discretized into a grid, we did not need to interpolate or transform the data in anyway (so as not to
introduce any additional assumptions), except for the normalization of payoffs in the range [0,100], where
0 corresponds to the lowest yield and 100 corresponds to the largest yield.

In selecting datasets, we used three inclusion criteria. Firstly, the datasets needed to be at least as
large as our 11x11 grid. If the dataset was larger, we randomly sampled a 11x11 subsection from the data.
Secondly, to avoid datasets where payoffs were highly skewed (e.g., with the majority of payoffs around 0
or around 100), we only included datasets where the median payoff was in the range [25,75]. Lastly, we
required that the spatial autocorrelation of each environment (computed using Moran’s I) be positive:

I =
N
W

Âi Â j wi j(xi � x̄)(x j � x̄)
Âi(xi � x̄)2 (25)

where N is the total number of samples (i.e., each plot of land), xi is the normalized yield (i.e., payoff)
for option i, x̄ is the mean payoff over all samples, and W is the spatial weights matrix where wi j = 1 if
i and j are the same or neighbouring samples and wi j = 0 otherwise. Moran’s I ranges between [�1,1]
where intuitively I =�1 would resemble a checkerboard pattern (with black and white tiles reflecting the
highest and lowers values in the payoff spectrum), indicating maximum difference between neighbouring
samples. On the other hand, I ! 1 would reflect a linear step function, with maximally high payoffs on
one side of the environment and maximally low payoffs on the other side. We included all environments
where I > 0, indicating that there exists some level of positive spatial correlation that could be used by
participants to guide search.

Model Recovery
We present model recovery results that assess whether or not our predictive model comparison procedure
allows us to correctly identify the true underlying model. To assess this, we generated data based on
each individual participant’s parameter estimates. More specifically, for each participant and round,
we use the cross-validated parameter estimates to specify a given model, and then generate new data
resembling participant data. We generate data using the Option Learning and the Function Learning Model
for Experiment 1 and the Option Learning* Model and the Function Learning* Model for Experiments
2 and 3. In all cases, we use the UCB sampling strategy in conjunction with the specified learning
model. We then utilize the same cross-validation method as before in order to determine if we can
successfully identify which model has generated the underlying data. Figure S2 shows the cross-validated
predictive performance (half boxplot with each data point representing a single simulated participant) for
the simulated data, along with the number of simulated participants best described (inset icon array).

Experiment 1
In the simulation for Experiment 1, our predictive model comparison procedure shows that the Option
Learning Model is a better predictor for data generated from the same underlying model, whereas the
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Table S1. Agricultural datasets used in Experiment 3

Dataset Name Spatial Autocorrelation Crop Source(Moran’s I)

batchelor.lemon.uniformity 0.053 Lemon 62

batchelor.navel1.uniformity 0.028 Navel Orange 62

batchelor.valencia.uniformity 0.098 Valencia Orange 62

draper.safflower.uniformity 0.075 Safflower 63

goulden.barley.uniformity 0.036 Barley 64

iyer.wheat.uniformity 0.047 Wheat 65

kalamkar.wheat.uniformity 0.004 Wheat (Yeoman II) 66

khin.rice.uniformity 0.011 Rice 67

kristensen.barley.uniformity 0.146 Barley 68

montgomery.wheat.uniformity 0.243 Wheat (Winter) 69

moore.polebean.uniformity 0.119 Blue Lake Pole Beans 70

moore.bushbean.uniformity 0.028 Bush Beans 70

moore.sweetcorn.uniformity 0.039 Sweet Corn 70

moore.carrots.uniformity 0.030 Carrots 70

moore.springcauliflower.uniformity 0.013 Spring Cauliflower 70

nonnecke.corn.uniformity 0.117 Sweet Corn 71

odland.soybean.uniformity 0.105 Soybean 72

odland.soyhay.uniformity 0.069 Soyhay 72

polson.safflower.uniformity 0.059 Safflower 73

stephens.sorghum.uniformity 0.043 Sorghum 74

Function Learning model is only marginally better at predicting data generated from the same underlying
model. This suggests that our main model comparison results are robust to Type I errors, and provides
evidence that the better predictive accuracy of the Function Learning model for participant data is unlikely
due to overfitting.

When the Option Learning Model generates data using participant parameter estimates, the same
Option Learning Model achieves an average predictive accuracy of R2 = .1 and describes 71 out 81
simulated participants best. On the same generated data, the Function Learning Model achieves an
average predictive accuracy of R2 = .08 and only describes 10 out of 81 simulated participants best. If the
counterfactual had occurred, namely that if data generated by the Option Learning Model had been best
predicted by the Function Learning Model, we would need to be sceptical about out modelling results on
the basis that the wrong model could describe data better than the true generating model. However, here
we see that the Function Learning Model does not make better predictions than the true model for data
generated by the Option Learning Model.

When the Function Learning Model has generated the underlying data, the same Function Learning
Model achieves a predictive accuracy of R2 = .4 and describes 41 out of 81 simulated participants
best, whereas the Option Learning model achieves a predictive accuracy of R2 = .39 and describes
40 participants best. This makes our finding of the Function Learning as the best predictive model
even stronger as—technically—the Option Learning Model could mimic parts of the Function Learning
behaviour.

Experiment 2
In the simulations for Experiment 2, we used the localized version of each type of learning model for
both generation and recovery, since in both cases, localization improved predictive accuracy of human
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Figure S2. Model recovery results. Data was generated by the specified generating model (left and right columns)
using individual participant parameter estimates. The recovery process used the same cross-validation method used
in the model comparison. We report the predictive accuracy of each candidate recovery model (colours). Boxplots
show the median (line), mean (diamond), interquartile range (box), and 1.5x IQR (whiskers). Each individual
(simulated) participant is represented as a dot, with lines connecting each simulated participant. Icon arrays show the
number of simulated participants best described. For both generating and recovery models, we used UCB sampling.
Table S2 reports the median values of the cross-validated parameter estimates used to specify each generating model.

participants (Table S2). Here, we find very clear recoverability in all cases, with the recovering model best
predicting the vast majority of simulated participants when it is also the generating model (Fig. S2).

When the Option Learning* Model generated the data, the Option Learning* Model achieves a
predictive accuracy of R2 = .32 and predicts 79 out of 80 simulated participants best, whereas the Function
Learning* Model predicts only a lone simulated participant better, with an average predictive accuracy of
R2 = .26.

If the Function Learning* Model generated the underlying data, the same Function Learning* Model
achieves a predictive accuracy of R2 = .34 and describes 77 out of 80 simulated participants best, whereas
the Option Learning* Model only describes 3 out of 80 simulated participants better, with a average
predictive accuracy of R2 = .32.

Experiment 3
We again find in all cases the best recovery model is the same as the generating model. When the
Option Learning* Model generated the data, the same Option Learning* Model best predicts 70 out of 80
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participants with an average predictive accuracy of R2 = .27, whereas the Function Learning* Model only
best predicts 10 out of 80 participants with an average predictive accuracy of R2 = .22.

When the Function Learning* Model generated the data, the matched recovery with the same Function
Learning* Model best predicted all 80 out of 80 participants, with an average predictive accuracy of
R2 = .34. While the Option Learning* Model did not best predict any of the participants, it achieves
similar levels of predictive accuracy, with an average of R2 = .32.

In all simulations, the model that has generated the underlying data is also the best performing model,
as assessed by its predictive accuracy and the number of simulated participants predicted best. Thus, we
can confidently say that our cross-validation procedure distinguishes between the two assessed model
classes. Moreover, in the cases where the Function Learning or Function Learning* Model has generated
the underlying data, the predictive accuracy of the same model is not perfect (i.e., R2 = 1), but rather close
to the predictive accuracies we found for participant data (Table S2).

Parameter Recovery
Another important question is whether or not the reported parameter estimates of the two Function
Learning models are reliable and robust. We address this question by assessing the recoverability of
the three parameters of the Function Learning model, the length-scale l , the exploration factor b , and
the temperature parameter t of the softmax choice rule. We use the results from the model recovery
simulation described above, and correlate the empirically estimated parameters used to generate data (i.e.,
the estimates based on participants’ data), with the parameter estimates of the recovering model (i.e.,
the MLE from the cross-validation procedure on the simulated data). We assess whether the recovered
parameter estimates are similar to the parameters that were used to generated the underlying data. We
present parameter recovery results for the Function Learning Model for Experiment 1 and the Function
Learning* Model for Experiments 2 and 3, in all cases using the UCB sampling strategy. We report the
results in Figure S3, with the generating parameter estimate on the x-axis and the recovered parameter
estimate on the y-axis.

For Experiment 1, the rank-correlation (Kendall’s tau)§ between the generating and the recovered
length-scale l is rt = .66, p < .001, the correlation between the generating and the recovered exploration
factor b is rt = .30, p < .001, and the correlation between the generating and the recovered softmax
temperature parameter t is rt = 0.54, p < .001. For Experiment 2, the correlation between the generating
and the recovered l is rt = .77, p < .001, for b the correlation is rt = .59, p < .001, and for t the
correlation is r =t .61, p < .001. For Experiment 3, the correlation between the generating and the
recovered l is rt = .70, p < .001, for b the correlation is rt = .76, p < .001, and for t the correlation is
r = .79, p < .001.

These results show that the rank-correlation between the generating and the recovered parameters is
high for all experiments and for all parameters. Thus, we have strong evidence to support the claim that
the reported parameter estimates of the Function Learning Model (Table S2) are io, reliable, and therefore
interpretable. Importantly, we find that estimates for b (exploration bonus) and t (softmax temperature)
are indeed separately identifiable, providing evidence for the existence of a directed exploration bonus12,
as a separate phenomena from noisy, undirected exploration46 in our data.

§We use rt to denote the rank-correlation, and should not be confused with the temperature parameter t of the softmax
function.
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Experiment 1:  Function Learning Parameter Recovery

Experiment 2:  Function Learning* Parameter Recovery
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Experiment 3:  Function Learning* Parameter Recovery
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Figure S3. Parameter recovery. The generating parameter estimate is on the x-axis and the recovered parameter
estimate is on the y-axis. The generating parameter estimates are from the cross-validated participant parameter
estimates, which were used to simulate data. Recovered parameter estimates are the result of the cross-validated
model comparison on the simulated data. While the cross-validation procedure yielded k estimates per participant,
one for each round (kExp1 = 16; kExp2 = kExp3 = 8), we show the median estimate per (simulated) participant. The
dashed line shows a linear regression on the data, with the rank correlation (Kendall’s tau) and p-value shown above.
For readability, colours represent the bivariate kernel density estimate, with red indicating higher density. Some
outliers greater than 1.5⇥ the IQR are excluded in the plot, but not from the rank correlations.

Mismatched generalization
Generalized mismatch
A mismatch is defined as estimating a different level of spatial correlations (captured by the per par-
ticipant l -estimates) than the ground truth in the environment. In the main text (Fig. 4), we report a
generalized Bayesian optimization simulation where we simulate every possible combination between
l0 = {0.1,0.2, · · · ,1} and l1 = {0.1,0.2, · · · ,1}, leading to 100 different combinations of student-teacher
scenarios. For each of these combinations, we sample a continuous bivariate target function from a GP
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parameterized by l0 and then use the Function Learning-UCB Model parameterized by l1 to search for
rewards. The exploration parameter b was set to 0.5 to resemble participant behaviour (Table S2). The
input space was continuous between 0 and 1, i.e., any number between 0 and 1 could be chosen and
GP-UCB was optimized (sometimes called the inner-optimization loop) per step using NLOPT75 for
non-linear optimization. It should be noted that instead of using a softmax choice rule, the optimization
method uses an argmax rule, since the former is not defined for continuous input spaces. Additionally,
since the interpretation of l is always relative to the input range, a length-scale of l = 1 along the unit
input range would be equivalent to l = 10 in the x,y = [0,10] input range of Experiments 2 and 3. Thus,
this simulation represents a broad set of potential mismatch alignments, while the use of continuous inputs
extends the scope of the task to an infinite state space.

Experiments 1 and 2
In both Experiments 1 and 2, we found that participant l -estimates were systematically lower than the true
value (lRough = 1 and lSmooth = 2), which can be interpreted as a tendency to undergeneralize compared
to the spatial correlation between rewards. In order to test how this tendency to undergeneralize (i.e.,
underestimate l ) influences task performance, we conducted two additional sets of simulations using
the exact experimental design for Experiments 1 and 2 (Fig. S4a-b). These simulations used different
combinations of l values in a teacher kernel (x-axis) to generate environments and in a student kernel
(y-axis), to simulate human search behaviour with the Function Learning Model.

Both teacher and student kernels were always RBF kernels, where the teacher kernel (used to generate
environments) was parameterized with a length-scale l0 and the student kernel (used to simulate search
behaviour) with a length-scale l1. For situations in which l0 6= l1, the assumptions of the student can
be seen as mismatched with the environment. The student overgeneralizes when l1 > l0 (Fig. S4a-b
above the dotted line), and undergeneralizes when l1 > l0 (Fig. S4a-b below the dotted line), as was
captured by our behavioural data. We simulated each possible combination of l0 = {0.1,0.2, · · · ,3} and
l1 = {0.1,0.2, · · · ,3}, leading to 900 different combinations of student-teacher scenarios. For each of
these combinations, we sample a target function from a GP parameterized by l0 and then use the Function
Learning-UCB Model parameterized by l1 to search for rewards using the median parameter estimates for
b and t from the matching experiment (see Table S2).

Figure S4a-b show the results of the Experiment 1 and Experiment 2 simulations, where the colour of
each tile shows the median reward obtained at the indicated trial number, for each of the 100 replications
using the specified teacher-student scenario. The first simulation assessed mismatch in the univariate
setting of Experiment 1 (Fig. S4a), using the median participant estimates of both the softmax temperature
parameter t = 0.01 and the exploration parameter b = 0.50 and simulating 100 replications for every
combination between l0 = {0.1,0.2, · · · ,3} and l1 = {0.1,0.2, · · · ,3}. This simulation showed that it
can be beneficial to undergeneralize (Fig. S4a, area below the dotted line), in particular during the first
five trials. Repeating the same simulations for the bivariate setting of Experiment 2 (using the median
participant estimates t = 0.02 and b = 0.47), we found that undergeneralization can also be beneficial in
a more complex two-dimensional environment (Fig. S4b), at least in the early phases of learning¶.

Experiment 3
Given the robust tendency to undergeneralize in Experiments 1 and 2 (where there was a true underlying
level of spatial correlation) and we ran one last simulation to examine how adaptive participant l estimates
were in the real-world datasets used in Experiment 3, compared to other possible l values. Figure

¶In general, assumptions about the level of correlations in the environment (i.e., extent of generalization l ) only influence
rewards in the short term, and can disappear over time once each option has been sufficiently sampled26
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Figure S4. Mismatched length-scale (l ) simulation results. a-b) The teacher length-scale l0 is on the x-axis, the
student length-scale l1 is on the y-axis, and each panel represents a different trial t. The teacher l0 values were used
to generate environments, while the student l1 values were used to parameterize the Function Learning-UCB Model
to simulate search performance. The dotted lines show where l0 = l1 and mark the difference between
undergeneralization and overgeneralization, with points below the line indicating undergeneralization. Each tile of
the heat-map indicates the median reward obtained for that particular l0-l1-combination, aggregated over 100
replications. Triangles and circles indicate mean participant l estimates from Rough and Smooth conditions, with
boxplots showing the interquartile range, the median (line), and 1.5x IQR (whiskers). c) Simulations with student l
values in the range [0,3] over 10,000 samples (sampled with replacement) from the set of 20 different natural
environments. Red lines show average cumulative reward and blue lines show the maximum reward. Vertical dashed
lines show the interquartile range of participant l estimates.

S4c shows the performance of different student l values in the range {0.1,0.2, · · · ,3} simulated over
10,000 replications sampled (with replacement) from the set of 20 natural environments. Red lines
show performance in terms of average cumulative reward (Accumulation criterion) and blue lines show
performance in terms of maximum reward (Maximization criterion). Vertical dashed lines indicate the
interquartile range of participant l estimates. As student l values increase, performance by both metrics
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typically peaks within the range of human l estimates, with performance largely staying constant or
decreasing for larger levels of l (with the exception of average reward at t = 40). Thus, we find that the
extent of generalization observed in participants is generally adaptive to the real-world environments they
encountered. It should also be noted that higher levels of generalization beyond what we observed in
participant data have only marginal benefits, yet could potentially come with additional computational costs
(depending on how it is implemented). Recall that a l of 0.8 corresponds to assuming the correlation of
rewards decay to 0 for options with a distance greater than 3. If we assume a computational implementation
where information about uncorrelated options is disregarded (e.g., in a sparse GP76), then the range of
participant l estimates could suggest a tendency towards lower complexity and memory requirements,
which sacrifices only marginal benefits in terms of either average cumulative reward or maximum reward.

Further behavioural Analysis
Learning over trials and rounds
We assessed whether participants improved more strongly over trials or over rounds (Fig. S5). If they
improved more over trials, this means that they are indeed finding better and better options, whereas if
they are improving over rounds, this would also suggest some kind of meta-learning as they would get
better at the task the more rounds they have performed previously. To test this, we fit a linear regression to
every participant’s outcome individually, either only with trials or only with rounds as the independent
variable. Afterwards, we extract the mean standardized slopes for each participant including their standard
errorsk. Results (from one-sample t-tests with µ0 = 0) show that participants’ scores improve significantly
over trials for Experiment 1 (t(80) = 5.57, p < .001, d = 0.62), Experiment 2 (t(79) = 2.78, p < .001,
d = 0.31), and Experiment 3 (t(79) = 5.91, p < .001, d = 0.66). Over successive rounds, there was a
negative influence on performance in Experiment 1 (t(80) = �2.78, p = .007, d = 0.3), no difference
in Experiment 2 (t(79) = 0.21, p = .834, d = 0.02), and a small positive influence in Experiment 3
(t(79) = 2.16, p = .034, d = 0.24). Overall, participants robustly improved over trials in all experiments,
with the largest effect sizes found in Experiments 1 and 3. Improvement over rounds is only found in
the natural environments of Experiment 3, which is surprising given the large variability between natural
environments, since there was no fixed level of spatial correlations.

Experiment Instructions
Figures S6 to S8 provide screenshots from each experiment, showing the instructions provided to partic-
ipants, separated by payoff condition. The top row of each figure shows the initial instructions, while
the bottom row shows a set of summarized instructions provided alongside the task. Links to each of the
experiments are also provided below.

• Experiment 1: https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch1/experiment1.html

• Experiment 2: https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch2/experiment2.html

• Experiment 3: https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch3/experiment3.html

kNotice that these estimates are based on a linear regression, whereas learning curves are probably non-linear. Thus, this
method might underestimate the true underlying effect of learning over time
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Figure S6. Screenshots from Experiment 1. Accumulation condition on the left and Maximization condition on
the right. a) Initial instructions given to participants, followed by b) summarized instructions provided alongside the
task.
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Figure S7. Screenshots from Experiment 2. Accumulation condition on the left and Maximization condition on
the right. a) Initial instructions given to participants, followed by b) summarized instructions provided alongside the
task.
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Figure S8. Screenshots from Experiment 4. Accumulation condition on the left and Maximization condition on
the right. a) Initial instructions given to participants, followed by b) summarized instructions provided alongside the
task.
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