Supporting information

Full Model Comparison

We report the full model comparison of 27 models, of which 12 (i.e., four learning models and three
sampling strategies) are included in the main text. We use different Models of Learning (i.e., Function
Learning and Option Learning), which combined with a Sampling Strategy can make predictions about
where a participant will search, given the history of previous observations. We also include comparisons
to Simple Heuristic Strategies, which make predictions about search decisions without maintaining a
representation of the world (i.e., without a learning model). Table S2 shows the predictive accuracy, the
number of participants best described, and the median parameter estimates of each model. Figure S1
shows a more detailed assessment of predictive accuracy, with participants separated by payoff condition
and environment type.

Models of Learning

Function Learning. The Function Learning Model adaptively learns an underlying function mapping
spatial locations onto rewards. We use Gaussian Process (GP) regression as a Bayesian method of function
learning®?. A GP is defined as a collection of points, any subset of which is multivariate Gaussian. Let
f: X — R" denote a function over input space X that maps to real-valued scalar outputs. This function
can be modelled as a random draw from a GP:

f~GP(m,k), (6)

where m 1s a mean function specifying the expected output of the function given input x, and & is a kernel
(or covariance) function specifying the covariance between outputs.

m(x) = E[f(x)] @)
k(x,x") = E[(f(x) —m(x))(f(x') —m(x'))] (®)
Here, we fix the prior mean to the median value of payoffs, m(x) = 50 and use the kernel function

to encode an inductive bias about the expected spatial correlations between rewards (see Radial Basis
Function kernel). Conditional on observed data D; = {x;,y;}’_;, where y; ~ N(f(x;), 6?) is drawn from

the underlying function with added noise 6> = 1, we can calculate the posterior predictive distribution for
a new input X, as a Gaussian with mean m(x,) and variance v;(X.) given by:

E[f(x:)|D/] = mi(x.) =k, (K+0’I) "y, ©)

VIF(x)|D] = v (x.) = k(xs,x.) —k[ (K+0°T) "'k, (10)
where y = [yy,...,y] ", Kis the t x t covariance matrix evaluated at each pair of observed inputs, and
k. = [k(x1,X4),...,k(X,X,)] is the covariance between each observed input and the new input X..

We use the Radial Basis Function (RBF) kernel as a component of the GP function learning algorithm,
which specifies the correlation between inputs.

12
k(x,x') = exp (—w) (11)

This kernel defines a universal function learning engine based on the principles of Bayesian regression
and can model any stationary function®. Intuitively, the RBF kernel models the correlation between points

/(12
{Note, sometimes the RBF kernel is specified as k(x,x') = exp (7%) whereas we use A = 2/ as a more psychologi-

cally interpretable formulation.
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as an exponentially decreasing function of their distance. Here, A modifies the rate of correlation decay,
with larger A-values corresponding to slower decays, stronger spatial correlations, and smoother functions.
As A — +oo, the RBF kernel assumes functions approaching linearity, whereas as A — 0, there ceases to
be any spatial correlation, with the implication that learning happens independently for each input without
generalization (similar to traditional models of associative learning). We treat A as a hyper-parameter, and
use cross-validated estimates to make inferences about the extent to which participants generalize.

Option Learning. The Option Learning Model uses a Bayesian Mean Tracker (BMT), which is a type of
associative learning model that assumes the average reward associated with each option is constant over
time (i.e., no temporal dynamics, as opposed to the assumptions of a Kalman filter or Temporal Difference
Learning)6, as 1s the case in our experimental search tasks. In contrast to the Function Learning model,
the Option Learning model learns the rewards of each option separately, by computing an independent
posterior distribution for the mean pi; for each option j. We implement a version that assumes rewards are
normally distributed (as in the GP Function Learning Model), with a known variance but unknown mean,
where the prior distribution of the mean is again a normal distribution. This implies that the posterior
distribution for each mean is also a normal distribution:

p(Wjs|Dio1) = N(mjy,vjs) (12)

For a given option j, the posterior mean m;, and variance v;, are only updated when it has been selected
at trial 7:

mjg=mj; 1+08;,Gjs [yi—mjs 1] (13)
vie=[1-81,Gji|vji1 (14)

where 6 ;i = 1 if option j was chosen on trial 7, and 0 otherwise. Additionally, y, is the observed reward at
trial 7, and G, is defined as:

Vit—1
G'; /

=4 15
My 62 (>

where 67 is the error variance, which is estimated as a free parameter. Intuitively, the estimated mean
of the chosen option m, is updated based on the difference between the observed value y; and the prior
expected mean m;, 1, multiplied by G;,. At the same time, the estimated variance v;, is reduced by a
factor of 1 — G, which is in the range [0, 1]. The error variance (982) can be interpreted as an inverse
sensitivity, where smaller values result in more substantial updates to the mean m;;, and larger reductions
of uncertainty v;,. We set the prior mean to the median value of payoffs m; o = 50 and the prior variance
Vio= 500.

Sampling Strategies

Given the normally distributed posteriors of the expected rewards, which have mean m,(x) and the
estimated uncertainty (estimated here as a standard deviation) s,(x) = 1/v;(x), for each search option
x (for the Option Learning model, we let m;(x) = m;, and v,(x) = v;,;, where j is the index of the
option characterized by x), we assess different sampling strategies that (with a softmax choice rule) make
probabilistic predictions about where participants search next at time # 4 1.
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Upper Confidence Bound Sampling. Given the posterior predictive mean m,(x) and the estimated
uncertainty s;(x), we calculate the upper confidence bound (UCB) using a simple weighted sum

UCB(x) = my(x) + Bs:(x), (16)

where the exploration factor B determines how much reduction of uncertainty is valued (relative to
exploiting known high-value options) and is estimated as a free parameter.

Pure Exploitation and Pure Exploration. Upper Confidence Bound sampling can be decomposed into
a Pure Exploitation component, which only samples options with high expected rewards, and a Pure
Exploration component, which only samples options with high uncertainty.

PureExploit(x) = m,(x) (17)
PureExplore(x) = s;(x) (18)

Expected Improvement. At any point in time ¢, the best observed outcome can be described as x™ =
arg maxy,ex,, M (X;). Expected Improvement (EXI) evaluates each option by how much (in the expectation)
it promises to be better than the best observed outcome x*:

D(Z) (my (x) —my(xT)) +5:(x)9(2),  if 5:(x) ig (19)

EXI(x) = {0, if s, ()

where ®(-) is the normal CDF, ¢ (-) is the normal PDF, and Z = (m,(x) — m,(x™)) /s;(x).

Probability of Improvement. The Probability of Improvement (POI) strategy evaluates an option based
on how likely it will be better than the best outcome (x*) observed so far:

POI(x) = P (f(x) > f(x1))
_ (m; (X) — Ny (X+)) (20)

5t(x)

Probability of Maximum Utility. The Probability of Maximum Utility (PMU) samples each option
according to the probability that it results in the highest reward of all options in a particular context®. It
is a form of probability matching and can be implemented by sampling from each option’s predictive
distribution once, and then choosing the option with the highest sampled payoff.

PMU(x) = P (f(x)) > f(xiz))) @1

We implement this sampling strategy by Monte Carlo sampling from the posterior predictive distri-
bution of a learning model for each option, and evaluating how often a given option turns out to be the
maximum over 1,000 generated samples.

Simple Heuristic Strategies

We also compare various simple heuristic strategies that make predictions about search behaviour without
learning about the distribution of rewards.
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Figure S1. Full model comparison of all 27 models. The learning model is indicated above (or lack of in the case
of simple heuristic strategies), and sampling strategy are along the x-axis. Bars indicate predictive accuracy (group
mean) along with standard error, and are separated by payoff condition (colour) and environment type (darkness),
with individual participants overlaid as dots. Icon arrays (right) show the number participants best described (out of
the full 27 models) and are aggregated over payoff conditions, environment types, and sampling strategy. Table S2
provides more detail about the number of participants best described by each model.

Win-Stay Lose-Sample. We consider a form of a win-stay lose-sample (WSLS) heuristic’®, where a win
is defined as finding a payoff with a higher or equal value than the previously best observed outcome.
When the decision-maker “wins”, we assume that any tile with a Manhattan distance < 1 is chosen (i.e., a
repeat or any of the four cardinal neighbours) with equal probability. Losing is defined as the failure to
improve, and results in sampling any unrevealed tile with equal probability.
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Local Search. Local search predicts that search decisions have a tendency to stay local to the previous
choice. We use inverse Manhattan distance (IMD) to quantify locality:

1

i1 |xi—xf|

IMD(x,x') = (22)

where x and x’ are vectors in R”. For the special case where x = x/, we set IMD(x,x’) = 1.

Localization of Models

With the exception of the Local Search model, all other models include a localized variant, which
introduced a locality bias by weighting the predicted value of each option ¢(x) by the inverse Manhattan
distance (IMD) to the previously revealed tile. This is equivalent to a multiplicative combination with
the Local Search model, similar to a “stickiness parameter”>%°, although we implement it here without
the introduction of any additional free parameters. Localized models are indicated with an asterisk (e.g.,
Function Learning*).

Model Comparison

We use maximum likelihood estimation (MLE) for parameter estimation, and cross-validation to measure
out-of-sample predictive accuracy. A softmax choice rule transforms each model’s prediction into a
probability distribution over options:

L expla)o)
P =T expla(x;)/7)" @)

where ¢(x) is the predicted value of each option x for a given model (e.g., g(x) = UCB(x) for the UCB
model), and 7 is the temperature parameter. Lower values of 7 indicate more concentrated probability
distributions, corresponding to more precise predictions. All models include 7 as a free parameter.
Additionally, Function Learning models estimate A (length-scale), Option Learning models estimate 982
(error variance), and Upper Confidence Bound sampling models estimate 3 (exploration bonus).

Cross Validation. We fit all models—per participant—using cross-validated MLE, with either a Differ-
ential Evolution algorithm®! or a grid search if the model contained only a single parameter. Parameter
estimates are constrained to positive values in the range [exp(—5),exp(5)]. Cross-validation is performed
by first separating participant data according to horizon length, which alternated between rounds within
subject. For each participant, half of the rounds corresponded to a short horizon and the other half corre-
sponded to a long horizon. Within all rounds of each horizon length, we use leave-one-out cross-validation
to iteratively form a training set by leaving out a single round, computing a MLE on the training set, and
then generating out-of-sample predictions on the remaining round. This is repeated for all combinations of
training set and test set, and for both short and long horizon sets. The cross-validation procedure yielded
one set of parameter estimates per round, per participant, and out-of-sample predictions for 120 choices in
Experiment 1 and 240 choices in Experiments 2 and 3 (per participant).

Predictive Accuracy. Prediction error (computed as log loss) is summed up over all rounds, and is
reported as predictive accuracy, using a pseudo-R> measure that compares the total log loss prediction
error for each model to that of a random model:

log L(M;)

RP=1-— B2V
logﬁ(Mrand)

(24)
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where 1og £( M anq) is the log loss of a random model (i.e., picking options with equal probability) and
log £(My) is the log loss of model k’s out-of-sample prediction error. Intuitively, R> = 0 corresponds
to prediction accuracy equivalent to chance, while R? = 1 corresponds to theoretical perfect prediction
accuracy, since log £L(My)/1og L(Mana) — 0 when log L(M}) < 1og L(Mang)-

Natural Environments

The natural environments used in Experiment 3 were compiled from various agricultural datasets
(Table S1), where payoffs correspond to normalized crop yield (by weight), and the rows and columns
of the 11x11 grid correspond to the rows and columns of a field. Because agricultural data is naturally
discretized into a grid, we did not need to interpolate or transform the data in anyway (so as not to
introduce any additional assumptions), except for the normalization of payoffs in the range [0, 100], where
0 corresponds to the lowest yield and 100 corresponds to the largest yield.

In selecting datasets, we used three inclusion criteria. Firstly, the datasets needed to be at least as
large as our 11x11 grid. If the dataset was larger, we randomly sampled a 11x11 subsection from the data.
Secondly, to avoid datasets where payoffs were highly skewed (e.g., with the majority of payoffs around 0
or around 100), we only included datasets where the median payoff was in the range [25,75]. Lastly, we
required that the spatial autocorrelation of each environment (computed using Moran’s I) be positive:

35,62-74

B EZiZjWij(Xi_x)(xj_x)
W Yi(xi —%)?

I (25)
where N is the total number of samples (i.e., each plot of land), x; is the normalized yield (i.e., payoff)
for option i, ¥ is the mean payoff over all samples, and W is the spatial weights matrix where w;; = 1 if
i and j are the same or neighbouring samples and w;; = 0 otherwise. Moran’s / ranges between [—1, 1]
where intuitively / = —1 would resemble a checkerboard pattern (with black and white tiles reflecting the
highest and lowers values in the payoff spectrum), indicating maximum difference between neighbouring
samples. On the other hand, I — 1 would reflect a linear step function, with maximally high payoffs on
one side of the environment and maximally low payoffs on the other side. We included all environments
where I > 0, indicating that there exists some level of positive spatial correlation that could be used by
participants to guide search.

Model Recovery

We present model recovery results that assess whether or not our predictive model comparison procedure
allows us to correctly identify the true underlying model. To assess this, we generated data based on
each individual participant’s parameter estimates. More specifically, for each participant and round,
we use the cross-validated parameter estimates to specify a given model, and then generate new data
resembling participant data. We generate data using the Option Learning and the Function Learning Model
for Experiment 1 and the Option Learning* Model and the Function Learning™ Model for Experiments
2 and 3. In all cases, we use the UCB sampling strategy in conjunction with the specified learning
model. We then utilize the same cross-validation method as before in order to determine if we can
successfully identify which model has generated the underlying data. Figure S2 shows the cross-validated
predictive performance (half boxplot with each data point representing a single simulated participant) for
the simulated data, along with the number of simulated participants best described (inset icon array).

Experiment 1
In the simulation for Experiment 1, our predictive model comparison procedure shows that the Option
Learning Model is a better predictor for data generated from the same underlying model, whereas the
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Table S1. Agricultural datasets used in Experiment 3

Spatial Autocorrelation

Dataset Name (Moran’s 1) Crop Source
batchelor.lemon.uniformity 0.053 Lemon 62
batchelor.navell.uniformity 0.028 Navel Orange 62
batchelor.valencia.uniformity 0.098 Valencia Orange 62
draper.safflower.uniformity 0.075 Safflower 63
goulden.barley.uniformity 0.036 Barley o4
iyer.wheat.uniformity 0.047 Wheat 65
kalamkar.wheat.uniformity 0.004 Wheat (Yeoman II) 66
khin.rice.uniformity 0.011 Rice 67
kristensen.barley.uniformity 0.146 Barley 68
montgomery.wheat.uniformity 0.243 Wheat (Winter) 69
moore.polebean.uniformity 0.119 Blue Lake Pole Beans 7°
moore.bushbean.uniformity 0.028 Bush Beans 70
moore.sweetcorn.uniformity 0.039 Sweet Corn 70
moore.carrots.uniformity 0.030 Carrots 70
moore.springcauliflower.uniformity 0.013 Spring Cauliflower 70
nonnecke.corn.uniformity 0.117 Sweet Corn 7
odland.soybean.uniformity 0.105 Soybean 2
odland.soyhay.uniformity 0.069 Soyhay 2
polson.safflower.uniformity 0.059 Safflower 73
stephens.sorghum.uniformity 0.043 Sorghum 74

Function Learning model is only marginally better at predicting data generated from the same underlying
model. This suggests that our main model comparison results are robust to Type I errors, and provides
evidence that the better predictive accuracy of the Function Learning model for participant data is unlikely
due to overfitting.

When the Option Learning Model generates data using participant parameter estimates, the same
Option Learning Model achieves an average predictive accuracy of R* = .1 and describes 71 out 81
simulated participants best. On the same generated data, the Function Learning Model achieves an
average predictive accuracy of R? = .08 and only describes 10 out of 81 simulated participants best. If the
counterfactual had occurred, namely that if data generated by the Option Learning Model had been best
predicted by the Function Learning Model, we would need to be sceptical about out modelling results on
the basis that the wrong model could describe data better than the true generating model. However, here
we see that the Function Learning Model does not make better predictions than the true model for data
generated by the Option Learning Model.

When the Function Learning Model has generated the underlying data, the same Function Learning
Model achieves a predictive accuracy of R*> = .4 and describes 41 out of 81 simulated participants
best, whereas the Option Learning model achieves a predictive accuracy of R> = .39 and describes
40 participants best. This makes our finding of the Function Learning as the best predictive model
even stronger as—technically—the Option Learning Model could mimic parts of the Function Learning
behaviour.

Experiment 2
In the simulations for Experiment 2, we used the localized version of each type of learning model for
both generation and recovery, since in both cases, localization improved predictive accuracy of human
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Figure S2. Model recovery results. Data was generated by the specified generating model (left and right columns)
using individual participant parameter estimates. The recovery process used the same cross-validation method used
in the model comparison. We report the predictive accuracy of each candidate recovery model (colours). Boxplots
show the median (line), mean (diamond), interquartile range (box), and 1.5x IQR (whiskers). Each individual

(simulated) participant is represented as a dot, with lines connecting each simulated participant. Icon arrays show the
number of simulated participants best described. For both generating and recovery models, we used UCB sampling.
Table S2 reports the median values of the cross-validated parameter estimates used to specify each generating model.

participants (Table S2). Here, we find very clear recoverability in all cases, with the recovering model best
predicting the vast majority of simulated participants when it is also the generating model (Fig. S2).

When the Option Learning® Model generated the data, the Option Learning® Model achieves a
predictive accuracy of R? = .32 and predicts 79 out of 80 simulated participants best, whereas the Function
Learning™ Model predicts only a lone simulated participant better, with an average predictive accuracy of
R> = .26.

If the Function Learning* Model generated the underlying data, the same Function Learning* Model
achieves a predictive accuracy of R> = .34 and describes 77 out of 80 simulated participants best, whereas
the Option Learning* Model only describes 3 out of 80 simulated participants better, with a average
predictive accuracy of R* = .32.

Experiment 3
We again find in all cases the best recovery model is the same as the generating model. When the
Option Learning* Model generated the data, the same Option Learning* Model best predicts 70 out of 80
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participants with an average predictive accuracy of R> = .27, whereas the Function Learning* Model only
best predicts 10 out of 80 participants with an average predictive accuracy of R? = .22.

When the Function Learning* Model generated the data, the matched recovery with the same Function
Learning* Model best predicted all 80 out of 80 participants, with an average predictive accuracy of
R? = .34. While the Option Learning* Model did not best predict any of the participants, it achieves
similar levels of predictive accuracy, with an average of R> = .32.

In all simulations, the model that has generated the underlying data is also the best performing model,
as assessed by its predictive accuracy and the number of simulated participants predicted best. Thus, we
can confidently say that our cross-validation procedure distinguishes between the two assessed model
classes. Moreover, in the cases where the Function Learning or Function Learning* Model has generated
the underlying data, the predictive accuracy of the same model is not perfect (i.e., R> = 1), but rather close
to the predictive accuracies we found for participant data (Table S2).

Parameter Recovery

Another important question is whether or not the reported parameter estimates of the two Function
Learning models are reliable and robust. We address this question by assessing the recoverability of
the three parameters of the Function Learning model, the length-scale A, the exploration factor 3, and
the temperature parameter T of the softmax choice rule. We use the results from the model recovery
simulation described above, and correlate the empirically estimated parameters used to generate data (i.e.,
the estimates based on participants’ data), with the parameter estimates of the recovering model (i.e.,
the MLE from the cross-validation procedure on the simulated data). We assess whether the recovered
parameter estimates are similar to the parameters that were used to generated the underlying data. We
present parameter recovery results for the Function Learning Model for Experiment 1 and the Function
Learning* Model for Experiments 2 and 3, in all cases using the UCB sampling strategy. We report the
results in Figure S3, with the generating parameter estimate on the x-axis and the recovered parameter
estimate on the y-axis.

For Experiment 1, the rank-correlation (Kendall’s tau)’ between the generating and the recovered
length-scale A is r; = .66, p < .001, the correlation between the generating and the recovered exploration
factor f is rr = .30, p < .001, and the correlation between the generating and the recovered softmax
temperature parameter 7 is r; = 0.54, p < .001. For Experiment 2, the correlation between the generating
and the recovered A is r; = .77, p < .001, for B the correlation is r; = .59, p < .001, and for 7 the
correlation is r =; .61, p < .001. For Experiment 3, the correlation between the generating and the
recovered A is r; = .70, p < .001, for B the correlation is r; = .76, p < .001, and for 7 the correlation is
r=.79, p <.001.

These results show that the rank-correlation between the generating and the recovered parameters is
high for all experiments and for all parameters. Thus, we have strong evidence to support the claim that
the reported parameter estimates of the Function Learning Model (Table S2) are io, reliable, and therefore
interpretable. Importantly, we find that estimates for B (exploration bonus) and 7 (softmax temperature)
are indeed separately identifiable, providing evidence for the existence of a directed exploration bonus!?,
as a separate phenomena from noisy, undirected exploration*® in our data.

$We use r; to denote the rank-correlation, and should not be confused with the temperature parameter 7 of the softmax
function.
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Experiment 1: Function Learning Parameter Recovery

1 =.66; p<.001 o r=.30; p<.001 0201 rr=.54; p<.001 ’
1.54 Vs
v ./
@ 0.751 J ’
i , 0.15 ?
[¢] 7
1.0 ] o 7
es
2 o & 050 & 0.10 7
8 @< ‘ »
§/ 4 e @@L
0.51 - &
R 0.25 o ®0 ° 0051 © 28
. oo 80 @0 _ - -- andl
e~ .
0.04 0.001 @ 0.001
00 05 10 15 000 025 050 075 000 005 010 015 020
A4 Bi T
Experiment 2. Function Learning* Parameter Recovery
r=.77, p<.001 ’ r=.59; p<.001 L rr=.61; p<.001 L’
7
oS, e 0.20 4
e ¢ 0.751 ’
o 7 e ' ’
1.01 “c8. ° 4
o © 0.15 e .
@ e ‘
2 a & 0501 o Cc(’;
0.10 Qe
0.5 276 3 ':§;
5\"," h ﬂ' PO’
4 0.251
’ 0.051 é&
7 o,
’ rd
Vi 4
0.04 L
0.00 . : . 0.00 . . . .
0.0 05 1.0 0.00 0.25 0.50 075 000 005 010 015 020
A4 B T
Experiment 3: Function Learning* Parameter Recovery
0.44 .
124 1 =.70; p<.001 . fr=.76; p<.001 7 ry=.79; p<.001 ,
4 , ’
Vi /
0.9 ’ 0.31 ’
1.04 @ 4 4
/7 /
% , ,
7
<06 & 8% o 02 e,/
0.5 'g y/
-9 { -
G 2
0.3 df( ’ 0.1 ?gr
e ,
e ’
0.0 004 * ood /

02 03 04

T

06 09 01

A4

00 03 00 05

Figure S3. Parameter recovery. The generating parameter estimate is on the x-axis and the recovered parameter
estimate is on the y-axis. The generating parameter estimates are from the cross-validated participant parameter
estimates, which were used to simulate data. Recovered parameter estimates are the result of the cross-validated
model comparison on the simulated data. While the cross-validation procedure yielded k estimates per participant,
one for each round (kgxp1 = 16; kgxp2 = kgxps = 8), we show the median estimate per (simulated) participant. The
dashed line shows a linear regression on the data, with the rank correlation (Kendall’s tau) and p-value shown above.
For readability, colours represent the bivariate kernel density estimate, with red indicating higher density. Some
outliers greater than 1.5x the IQR are excluded in the plot, but not from the rank correlations.

Mismatched generalization

Generalized mismatch

A mismatch is defined as estimating a different level of spatial correlations (captured by the per par-
ticipant A-estimates) than the ground truth in the environment. In the main text (Fig. 4), we report a
generalized Bayesian optimization simulation where we simulate every possible combination between
A ={0.1,0.2,---,1} and A; = {0.1,0.2,--- , 1}, leading to 100 different combinations of student-teacher
scenarios. For each of these combinations, we sample a continuous bivariate target function from a GP
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parameterized by Ay and then use the Function Learning-UCB Model parameterized by A; to search for
rewards. The exploration parameter 3 was set to 0.5 to resemble participant behaviour (Table S2). The
input space was continuous between 0 and 1, i.e., any number between 0 and 1 could be chosen and
GP-UCB was optimized (sometimes called the inner-optimization loop) per step using NLOPT’> for
non-linear optimization. It should be noted that instead of using a softmax choice rule, the optimization
method uses an argmax rule, since the former is not defined for continuous input spaces. Additionally,
since the interpretation of A is always relative to the input range, a length-scale of A = 1 along the unit
input range would be equivalent to A = 10 in the x,y = [0, 10] input range of Experiments 2 and 3. Thus,
this simulation represents a broad set of potential mismatch alignments, while the use of continuous inputs
extends the scope of the task to an infinite state space.

Experiments 1 and 2

In both Experiments 1 and 2, we found that participant A-estimates were systematically lower than the true
value (Agougn = 1 and Agpo0mn = 2), wWhich can be interpreted as a tendency to undergeneralize compared
to the spatial correlation between rewards. In order to test how this tendency to undergeneralize (i.e.,
underestimate A) influences task performance, we conducted two additional sets of simulations using
the exact experimental design for Experiments 1 and 2 (Fig. S4a-b). These simulations used different
combinations of A values in a teacher kernel (x-axis) to generate environments and in a student kernel
(y-axis), to simulate human search behaviour with the Function Learning Model.

Both teacher and student kernels were always RBF kernels, where the teacher kernel (used to generate
environments) was parameterized with a length-scale A and the student kernel (used to simulate search
behaviour) with a length-scale A;. For situations in which A # A, the assumptions of the student can
be seen as mismatched with the environment. The student overgeneralizes when A; > Ay (Fig. S4a-b
above the dotted line), and undergeneralizes when A; > A (Fig. S4a-b below the dotted line), as was
captured by our behavioural data. We simulated each possible combination of Ag = {0.1,0.2,---,3} and
A1 ={0.1,0.2,---,3}, leading to 900 different combinations of student-teacher scenarios. For each of
these combinations, we sample a target function from a GP parameterized by Ay and then use the Function
Learning-UCB Model parameterized by A4, to search for rewards using the median parameter estimates for
B and T from the matching experiment (see Table S2).

Figure S4a-b show the results of the Experiment 1 and Experiment 2 simulations, where the colour of
each tile shows the median reward obtained at the indicated trial number, for each of the 100 replications
using the specified teacher-student scenario. The first simulation assessed mismatch in the univariate
setting of Experiment 1 (Fig. S4a), using the median participant estimates of both the softmax temperature
parameter T = 0.01 and the exploration parameter 8 = 0.50 and simulating 100 replications for every
combination between A9 = {0.1,0.2,---,3} and A; = {0.1,0.2,---,3}. This simulation showed that it
can be beneficial to undergeneralize (Fig. S4a, area below the dotted line), in particular during the first
five trials. Repeating the same simulations for the bivariate setting of Experiment 2 (using the median
participant estimates T = 0.02 and 8 = 0.47), we found that undergeneralization can also be beneficial in
a more complex two-dimensional environment (Fig. S4b), at least in the early phases of learning¥.

Experiment 3

Given the robust tendency to undergeneralize in Experiments 1 and 2 (where there was a true underlying
level of spatial correlation) and we ran one last simulation to examine how adaptive participant A estimates
were in the real-world datasets used in Experiment 3, compared to other possible A values. Figure

9In general, assumptions about the level of correlations in the environment (i.e., extent of generalization 1) only influence
rewards in the short term, and can disappear over time once each option has been sufficiently sampled?®
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Figure S4. Mismatched length-scale (A1) simulation results. a-b) The teacher length-scale A is on the x-axis, the
student length-scale A, is on the y-axis, and each panel represents a different trial ¢. The teacher Ay values were used
to generate environments, while the student A; values were used to parameterize the Function Learning-UCB Model
to simulate search performance. The dotted lines show where A9 = A; and mark the difference between
undergeneralization and overgeneralization, with points below the line indicating undergeneralization. Each tile of
the heat-map indicates the median reward obtained for that particular Ay-A;-combination, aggregated over 100
replications. Triangles and circles indicate mean participant A estimates from Rough and Smooth conditions, with
boxplots showing the interquartile range, the median (line), and 1.5x IQR (whiskers). ¢) Simulations with student A
values in the range [0,3] over 10,000 samples (sampled with replacement) from the set of 20 different natural
environments. Red lines show average cumulative reward and blue lines show the maximum reward. Vertical dashed
lines show the interquartile range of participant A estimates.

S4c shows the performance of different student A values in the range {0.1,0.2,---,3} simulated over
10,000 replications sampled (with replacement) from the set of 20 natural environments. Red lines
show performance in terms of average cumulative reward (Accumulation criterion) and blue lines show
performance in terms of maximum reward (Maximization criterion). Vertical dashed lines indicate the
interquartile range of participant A estimates. As student A values increase, performance by both metrics
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typically peaks within the range of human A estimates, with performance largely staying constant or
decreasing for larger levels of A (with the exception of average reward at t = 40). Thus, we find that the
extent of generalization observed in participants is generally adaptive to the real-world environments they
encountered. It should also be noted that higher levels of generalization beyond what we observed in
participant data have only marginal benefits, yet could potentially come with additional computational costs
(depending on how it is implemented). Recall that a A of 0.8 corresponds to assuming the correlation of
rewards decay to O for options with a distance greater than 3. If we assume a computational implementation
where information about uncorrelated options is disregarded (e.g., in a sparse GP’%), then the range of
participant A estimates could suggest a tendency towards lower complexity and memory requirements,
which sacrifices only marginal benefits in terms of either average cumulative reward or maximum reward.

Further behavioural Analysis

Learning over trials and rounds

We assessed whether participants improved more strongly over trials or over rounds (Fig. S5). If they
improved more over trials, this means that they are indeed finding better and better options, whereas if
they are improving over rounds, this would also suggest some kind of meta-learning as they would get
better at the task the more rounds they have performed previously. To test this, we fit a linear regression to
every participant’s outcome individually, either only with trials or only with rounds as the independent
variable. Afterwards, we extract the mean standardized slopes for each participant including their standard
errors!. Results (from one-sample t-tests with iy = 0) show that participants’ scores improve significantly
over trials for Experiment 1 ((80) = 5.57, p < .001, d = 0.62), Experiment 2 (#(79) = 2.78, p < .001,
d = 0.31), and Experiment 3 (¢(79) = 5.91, p < .001, d = 0.66). Over successive rounds, there was a
negative influence on performance in Experiment 1 (¢(80) = —2.78, p = .007, d = 0.3), no difference
in Experiment 2 (#(79) = 0.21, p = .834, d = 0.02), and a small positive influence in Experiment 3
(t(79) = 2.16, p = .034, d = 0.24). Overall, participants robustly improved over trials in all experiments,
with the largest effect sizes found in Experiments 1 and 3. Improvement over rounds is only found in
the natural environments of Experiment 3, which is surprising given the large variability between natural
environments, since there was no fixed level of spatial correlations.

Experiment Instructions

Figures S6 to S8 provide screenshots from each experiment, showing the instructions provided to partic-
ipants, separated by payoff condition. The top row of each figure shows the initial instructions, while
the bottom row shows a set of summarized instructions provided alongside the task. Links to each of the
experiments are also provided below.

e Experiment 1: https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearchl/experimentl.html
e Experiment2: https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch2/experiment2.html

e Experiment 3: https://arc-vlab.mpib-berlin.mpg.de/wu/gridsearch3/experiment3.html

INotice that these estimates are based on a linear regression, whereas learning curves are probably non-linear. Thus, this
method might underestimate the true underlying effect of learning over time
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Figure S5. Learning over trials and rounds. Average correlational effect size of trial and round on score per
participant as assessed by a standardized linear regression. Participants are ordered by effect size in decreasing order.
Dashed lines indicate no effect. Red lines indicate average effect size.
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Accumulation Condition

Instructions:

Please read the following instructions very carefully:

In the following study, you will be presented with a series of 16 different environments to explore, depicted as a row
of boxes. By clicking on any of the boxes, you will earn points associated with each unique box. For each row of boxes,
'you will have either 5 or 10 clicks, with the number of remaining clicks displayed on the page. When you run out of
clicks, you will start a new trial on the next unexplored environment.

Each environment starts with a single box revealed. Use your mouse to click and reveal new box, which will display a
number corresponding to the number of points you gain. Revealed tiles are also color coded, as a visual aid to help you
in this task. Darker colors correspond to larger rewards. Previously revealed boxes can also be reselected, although
there may be small changes in the point value.

It is your task to gain as many points as possible zcross all 16 environments. You will be assigned a bonus of up to
$1.50 based on your total score in each environment.

Important! Peints are clustered along the row of boxes, such that boxes with high-value points tend to appear close to
each other and boxes with low-value points tend to appear close to each other. All payoffs are greater than zero, with
the maximum payoff differing between environments.

Below, we show some examples of what the distributicn of points are like, with the darker boxes indicating higher point
values.

Maximization Condition

Instructions:

Please read the following instructions very carefully:

In the following study, you will be presented with a series of 16 different environments to explore, depicted as a row
of boxes. By clicking on any of the boxes, you will earn points associated with each unique box. For each row of boxes,
you will have either 5 or 10 clicks, with the number of remaining clicks displayed on the page. When you run out of
clicks, you will start a new trial on the next unexplored environment.

Each environment starts with a single box revealed. Use your mouse to click and reveal new box, which will display a
number corresponding to the number of points you gain. Revealed tiles are alsc color coded, as a visual aid to help you
in this task. Darker colors correspond to larger rewards. Previously revealed boxes can also be reselected, although
there may be small changes in the point value.

Itis your task to learn where the largest reward is in each of the 16 environments. You will be assigned a bonus of up
to $1.50 based on the largest value you reveal in each environment.

Important! Neighboring boxes tend to have similar peint values, such that bexes with high-value points tend to appear
close to each other and boxes with low-value points tend to appear close to each other. All payoffs are greater than
zero, with the maximum payoff differing between environments.

Below, we show scme examples of what the distribution of points are like, with the darker boxes indicating higher point
values.

[e[11]12]12] 16 266 =858

|4=_24|5‘7‘275‘32‘15[5‘s||5‘21‘21[21‘24|2a‘

[16[19|27|30|3o[35 3t]20[10] 5 [ o [23]48 43[35(24[13] 6 [10]25 48

Show Next Example ‘

Goal: Gain as many points as possible.

Summarized Instructions:
1. Below you see a row of 30 boxes. When you click on a box, the points of that box are revealed and its value will be
displayed. Revealed boxes are colored, corresponding to the point value.

1l. Boxes can be repeatedly clicked, although there may be small variations in the points earned. The most recently
uncovered point value is displayed, while the history of revealed peints can be viewed by hovering your mouse over the
box.

1l The points of a box depends upon where it is located, with neighboring boxex tending to have similar point values.

IV. On top of the row of boxes, you can see how many clicks you have left, the number of envirenments left to explore,
and the amount of bonus you have currently eamed.

V. There are 16 different environments with either 5 or 10 clicks in each (alternating).
V1. Your reward will be based on the total points you earn, by revealing new tiles and also by reclicking previously
revealed tiles.

Current Score: 15
Number of environments left: 16
Number of clicks left: 10

Show Next Example

Goal: Learn where the largest reward is.

Summarized Instructions:

1. Below you see a row of 30 boxes. When you click on a box, the points of that box are revealed and its value will be
displayed. Revealed boxes are colored, corresponding te the point value.

I1. Boxes can be repeatedly clicked, although there may be small variations in the points earned. The most recently
uncovered point value is displayed, while the history of revealed points can be viewed by hovering your mouse over the
box.

Il The points of a box depends upon where it is located, with neighboring boxex tending to have similar point values.

IV. On top of the row of boxes, you can see how many clicks you have left, the number of environments left to explore,
and the amount of bonus you have currently eamed.

V. There are 16 different environments with either 5 or 10 clicks in each (alternating).
V1. Your reward will be based the largest point value that is revealed in each grid.

Largest Reward Found: 48
Number of environments left: 16
Number of clicks left: 5

I Y O O B A T
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Figure S6. Screenshots from Experiment 1. Accumulation condition on the left and Maximization condition on
the right. a) Initial instructions given to participants, followed by b) summarized instructions provided alongside the
task.
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Accumulation Condition
a

Instructions:
Please read the following instructions very carefully:

In the following study, you will be presented with a series of 8 different grids to explore. By clicking on tiles in the grid,
you reveal points that are associated to the location on the grid. On each grid, you will have either 20 or 40 clicks, with
the number of remaining clicks displayed above the grid. When you run out of clicks, you will start a new trial on the
next unexplored grid.

Each grid starts with a single tile revealed. Use your mouse to click and reveal new tiles, which will display a number
corresponding to the number of peints you gain. Revealed tiles are also color coded, as a visual aid to help you in this
task. Darker colors correspond to larger rewards. Previously revealed tiles can also be reselected and there may be
small changes in the point value

It is your task to gain as many points as possible across all 8 grids. You will be assigned a bonus of up to $1.50 based
on your total score across all grids.

Important! Points are clustered along the grid, such that areas with high-value points tend to appear close to each
other and areas of low-value points tend to appear close to each other. All payoffs are greater than zero, with the
maximum payoff differing between grids.

Below, we show some of what the 1 of peints are like, with the darker tiles indicating higher point
values.
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Show Next Example

Goal: Gain as many points as possible.

Summarized Instructions:

1. Below you see a grid with 11x11 tiles. When you click on a tile, the points of that tile are revealed and its value will be
displayed. Tiles are colored, corresponding to the point value.

Il Tiles can be repeatedly clicked, although there may be small variations in the points earned. The most recently
uncovered point value is displayed, while the history of revealed points can be viewed by hovering over the tile.

1ll. The points of a tile depends upon where it is located, with neighboring tiles tending to have similar point values.

IV. On top of the grid, you can see how many clicks you have left, the number of grids left to explore, and the amount of
bonus you have currently earned.

V. There are 8 different grids with either 20 or 40 clicks in each (alternating).

V1. Your reward will be based on the total points you earn, by revealing new tiles and also by reclicking previously
revealed tiles.

Current Score: 43

Number of grids left: 8
Number of clicks left: 40

Maximization Condition

Instructions:

Please read the following instructions very carefully:

In the following study, you will be presented with a series of 8 different grids to explore. By clicking on tiles in the grid,
you reveal points that are associated to the location on the grid. On each grid, you will have either 20 or 40 clicks, with
the number of remaining clicks displayed above the grid. When you run out of clicks, you will start a new trial on the
next unexplored grid.

Each grid starts with a single tile revealed. Use your mouse to click and reveal new tiles, which will display a number
corresponding to the number of points you gain. Revealed tiles are also color coded, as a visual aid to help you in this
task. Darker colors correspond to larger rewards. Previously revealed tiles can also be reselected and there may be
small changes in the point value.

It is your task to learn where the largest reward is in each of the 8 grids. You will be assigned a bonus of up to $1.50
based on the largest value you reveal in each grid.

Important! Points are clustered along the grid, such that areas with high-value points tend to appear close to each
other and areas of low-value points tend to appear close to each other. All payoffs are greater than zero, with the
maximum payoff differing between grids.

Below, we show some examples of what the distribution of points are like, with the darker tiles indicating higher point
values.
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Show Next Example

Goal: Learn where the largest reward is.

Summarized Instructions:

1. Below you see a grid with 11x11 tiles. When you click on a tile, the points of that tile are revealed and its value will be
displayed. Tiles are colored, corresponding to the point value.

IL. Tiles can be repeatedly clicked, although there may be small variations in the points earned. The most recently
uncovered point value is displayed, while the history of revealed points can be viewed by hovering over the tile.

1ll. The points of a tile depends upen where it is located, with neighboring tiles tending to have similar point values.

IV. On top of the grid, you can see how many clicks you have left, the number of grids left to explore, and the amount of
bonus you have currently earned.

V. There are 8 different grids with either 20 or 40 clicks in each (alternating).
VL. Your reward will be based the largest point value that is revealed in each grid.

Largest Reward Found: 40
Number of grids left: 8
Number of clicks left: 20

Figure S7. Screenshots from Experiment 2. Accumulation condition on the left and Maximization condition on
the right. a) Initial instructions given to participants, followed by b) summarized instructions provided alongside the

task.
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Accumulation Condition
a
Instructions:

In the following study, you will be presented with a series of 8 different grids to explore. By clicking on tiles in the grid,
you reveal points that are associated to the location on the grid. On each grid, you will have either 20 or 40 clicks, with
the number of remaining clicks displayed above the grid. When you run out of clicks, you will start a new trial cn the
next unexplored grid.

Each grid starts with a single tile revealed. Use your mouse to click and reveal new tiles, which will display a number
correspanding to the number of points you gain. Revealed tiles are also color coded, as a visual aid to help you in this
task. Darker colors correspond to larger rewards. Previously revealed tiles can also be reselected and there may be
small changes in the point value.

It is your task to gain as many points as possible across all 8 grids. You will be assigned a bonus of up to $1.50 based
on your total score across all grids.

Important! Points are clustered along the grid, such that areas with high-value points tend to appear close to each
other and areas of low-value points tend to appear close to each other. All payoffs are greater than zero, with the
maximum payoff differing between grids.

Below, we show some examples of what the distribution of points are like, with the darker tiles indicating higher point
values.
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Show Next Example

Goal: Gain as many points as possible.

Summarized Instructions:

|. Below you see a grid with 11x11 tiles. When you click on a tile, the points of that tile are revealed and its value will be
displayed. Tiles are colored, corresponding to the point value.

IL. Tiles can be repeatedly clicked, although there may be small variations in the points earned. The most recently
uncovered point value is displayed, while the history of revealed points can be viewed by hovering over the tile.

Il The paints of a tile depends upon where it is located, with neighboring tiles tending to have similar point values.

IV. On top of the grid, you can see how many clicks you have left, the number of grids left to explore, and the amount of
bonus you have currently earned.

V. There are 8 different grids with either 20 or 40 clicks in each (alternating).

VL. Your reward will be based on the total points you earn, by revealing new tiles and also by reclicking previously
revealed tiles.

Current Score: 25
Number of grids left: 8
Number of clicks left: 40

25

Maximization Condition

Instructions:

Please read the following instructions very carefully:

In the following study, you will be presented with a series of 8 different grids to explore. By clicking on tiles in the grid,
you reveal points that are associated to the location on the grid. On each grid, you will have either 20 or 40 clicks, with
the number of remaining clicks displayed above the grid. When you run out of clicks, you will start 2 new trial on the
next unexplored grid.

Each grid starts with a single tile revealed. Use your mouse to click and reveal new tiles, which will display a number
corresponding to the number of points you gain. Revealed tiles are also color coded, as a visual aid to help you in this
task. Darker colors correspond to larger rewards. Previously revealed tiles can also be reselected and there may be
ssmall changes in the point value.

Itis your task to learn where the largest reward is in each of the 8 grids. You will be assigned a bonus of up to $1.50
based on the largest value you reveal in each grid.

Important! Points are clustered along the grid, such that areas with high-value points tend to appear close to each
other and areas of low-value points tend to appear close to each other. All payoffs are greater than zero, with the
maximum payoff differing between grids.

Below, we show some examples of what the distribution of points are like, with the darker tiles indicating higher point
values.
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Show Next Example

Goal: Learn where the largest reward is.

Summarized Instructions:

I. Below you see a grid with 11x11 tiles. When you click on a tile, the points of that tile are revealed and its value will be
displayed. Tiles are colored, corresponding to the point value.

IL. Tiles can be repeatedly clicked, although there may be small variations in the points earmed. The mast recently
uncovered point value is displayed, while the history of revealed points can be viewed by hovering over the tile.

lll. The points of a tile depends upon where it is located, with neighboring tiles tending to have similar point values.

IV. On top of the grid, you can see how many clicks you have left, the number of grids left to explore, and the amount of
bonus you have currently earned.

V. There are 8 different grids with either 20 or 40 clicks in each (alternating).
VI. Your reward will be based the largest point value that is revealed in each grid.

Largest Reward Found: 56

Number of grids left: 8

Number of clicks left: 40

Figure S8. Screenshots from Experiment 4. Accumulation condition on the left and Maximization condition on
the right. a) Initial instructions given to participants, followed by b) summarized instructions provided alongside the

task.
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