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1 Tablemaker output files

Tablemaker outputs the following set of related tab-delimited text files. Tablemaker is de-
signed to be run on the output of Cufflinks and Cuffmerge but Ballgown can be used with
any assembly output that can be converted into the following sets of tab-delimited files.

• e data.ctab: exon-level expression measurements. One row per exon. Columns are
e id (numeric exon id), chr, strand, start, end (genomic location of the exon), and the
following expression measurements for each sample:

– rcount: reads overlapping the exon

– ucount: uniquely mapped reads overlapping the exon

– mrcount: multi-map-corrected number of reads overlapping the exon

– cov: average per-base read coverage

– cov sd: standard deviation of per-base read coverage

– mcov: multi-map-corrected average per-base read coverage
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– mcov sd: standard deviation of multi-map-corrected per-base coverage

• i data.ctab: intron- (i.e., junction-) level expression measurements. One row per intron.
Columns are i id (numeric intron id), chr, strand, start, end (genomic location of the
intron), and the following expression measurements for each sample:

– rcount: number of reads supporting the intron

– ucount: number of uniquely mapped reads supporting the intron

– mrcount: multi-map-corrected number of reads supporting the intron

• t data.ctab: transcript-level expression measurements. One row per transcript. Columns
are:

– t id: numeric transcript id

– chr, strand, start, end: genomic location of the transcript

– t name: Cufflinks-generated transcript id

– num exons: number of exons comprising the transcript

– length: transcript length, including both exons and introns

– gene id: gene the transcript belongs to

– gene name: HUGO gene name for the transcript, if known

– cov: per-base coverage for the transcript (available for each sample)

– FPKM: Cufflinks-estimated FPKM for the transcript (available for each sample)

• e2t.ctab: table with two columns, e id and t id, denoting which exons belong to which
transcripts. These ids match the ids in the e data and t data tables.

• i2t.ctab: table with two columns, i id and t id, denoting which introns belong to which
transcripts. These ids match the ids in the i data and t data tables.

2 Data and Notation

There are two distinct components to the data that Ballgown is equipped to analyze: the
actual structure of the assembled transcriptome: (1) genomic locations of features and the
relationships between exons, introns, transcripts and (2) genes and the expression measure-
ments for the features in the transcriptome. Here we precisely define both the assembly
structure and the associated data.
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Assembly structure

The transcriptome is assembled based on a set R of aligned RNA-seq reads. We denote the
yth read from the zth sample with ryz, where y = 1, ..., Nz and z = 1, ..., n, so there are n
samples in the study, and sample z has Nz aligned reads.

The transcriptome assembled from the reads consists of four types of features: transcripts,
genes, exons, and introns. These features all have start and finishing positions on the genome,
which represent using the functions s() and f(), e.g., s(x) represents the start position of
feature x. The K assembled transcripts are denoted by tk, where k = 1, ..., K. These
transcripts can be organized into G genes, denoted by gl, l = 1, ..., G. Each gene can be
represented by a set of transcripts falling within its boundaries:

gl = {tk : s(tk) > s(gl) and f(tk) < f(gl)}

The assembly also contains M exons, each of which we represent as a closed interval of
genomic locations:

em = [s(em), f(em)],m = 1, ...,M

With this notation, we can then represent transcript k as a subset of the M exons comprising
the assembly:

tk = {em : m ∈ Ik}, Ik ⊂ {1, ...,M}
Here, Ik represents the indices of the exons that make up transcript k. Note that the exon
em can belong to several different transcripts. We can then easily define s(tk) and f(tk) in
terms of exon boundaries:

s(tk) = min{s(em) : m ∈ Ik}
f(tk) = max{f(em) : m ∈ Ik}

Finally, let wk represent the wth element of Ik. Then we can denote the wth intron in
transcript k with an open interval:

ikw = (f(ewk
), s(e(w+1)k))

In other words, ikw is simply the genomic interval between the wth and w + 1th exons of
transcript k.

With these definitions in place, we can now precisely define the reads ryz. An RNA-seq
read is simply a subsequence of an RNA transcript. Using set notation, we can define each
read using the form:

ryz =

{
x ∈ [E,E ′] : E < E ′ and x,E,E ′ ∈

⋃
m∈Ik

em for some k

}
An assembly algorithm applied to the set of reads ryz produces estimates of the exons:

êm,m = 1, . . . ,M , transcripts: t̂k, k = 1, . . . K of the transcripts and genes: ĝl, l = 1, . . . , G.
Most current statistical models treat this assembly as fixed and correct when performing
analyses. But as we will demonstrate in the methods section, assembled transcripts are
subject to error and may be improved through statistical analysis [11, 18].
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Expression Data

Next we can define expression measurements for each type of feature given a particular
assembled set of transcripts. Here we define sensible expression measurements that are
currently implemented in the Ballgown package, but the statistical models are flexible enough
to handle other types of measures as well.

For each sample z, each transcript t̂k has two measurements that are calculated by our
upstream Ballgown preprocessing software: average per-base read coverage: cov(tk, z) and
FPKM (fragments per kilobase of transcript per million mapped reads): FPKM(tk, z).
Currently, these transcript-level measurements are estimated in Cufflinks via maximum like-
lihood; the procedure is described in detail by [19].

Each gene gl has one expression measurement for each sample, FPKM(gl, z). This
measurement is reconstructed from the transcripts in gl as follows: first, the number of
fragments per million mapped reads for sample z for each tk ∈ gl is calculated by multiplying
FPKM(tk, z) by the length of transcript tk in kilobases. The gene’s total fragments per
million mapped reads is the sum of the transcript-level fragments per million mapped reads
for all the transcripts in the gene. Finally, the gene-level FPKM is calculated by dividing
the gene’s total fragments per million mapped reads by the gene’s length.

The Ballgown preprocessor also calculates average per-base read coverage for each exon
in the assembly, given the assembly structure and the aligned reads R. For sample z, we
have:

cov(em, z) =

∑
ryz∈R

∑
bp∈[s(em),f(em)] 1{bp ∈ ryz}

f(em)− s(em) + 1

Each exon also has a raw read count, defined as the number of reads whose alignments
overlap that exon:

rcount(em, z) =
∑
ryz∈R

1{ryz ∩ em 6= ∅}

The main expression measurement for introns is also raw read count, defined as the number
of reads whose alignments support the intron in the sense that their alignments are split
across that intron’s neighboring exons:

rcount(ikw, z) =
∑
ryz∈R

1{s(ryz) ∈ em and f(ryz) ∈ em′}

where m ≤ wk and m′ ≥ (w + 1)k.

Statistical methods for detecting differential expression

After exploring the structure of the assembled transcriptome and performing any necessary
transcript post processing, the next step is to identify transcripts or genes that are differ-
entially expressed across groups. Here we outline a framework for statistical analysis of
transcript and gene abundances. To make the ideas concrete we use FPKM as the expres-
sion measurement and transcripts as the feature of interest, but these can be replaced in the
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following model definitions with any of the expression measurements and any of the available
genomic features in the assembly (genes, transcripts, exons, or introns).

Differential expression tests are implemented as follows: for each transcript t̂k, the fol-
lowing model is fit:

h(FPKM(t̂k, z)) = αk +
P∑

p=1

βpkXzp + εzk (1)

where:

• FPKM(t̂k, z) is the FPKM expression measurement for transcript k for sample z

• h is a transformation [2] to reduce the impact of mean-variance relationships observed
in the counts [1]. For example, the transformation h(·) = log2(· + 1) is commonly
applied in the analysis of sequence-count data [8].

• αk represents the baseline expression for transcript k

• Xzp represents covariate p for sample z. These covariates differ by experiment type.
Xz1 generally represents a library size adjustment for sample z; ballgown’s default for
this value is X1z = mediank{FPKM(t̂k, z)}

• βpk quantifies the association of covariate p on te expression of transcript k

• ε represents residual measurement error

A flexible approach to differential expression is to compare nested sub models of model (1)
using parametric F-tests [15]. The null hypothesis can be as flexible as any linear contrast
of the coefficients βpk but for simplicity we focus on null hypotheses of the form: H0 :
βpk = 0, p ∈ S versus the alternative that all βpk are nonzero. The general principle is
that a model including any potential confounders plus the covariate(s) of interest – a 0/1
indicator for group in the two-group comparison, several indicator variables for the multi-
group comparison, or a generalized additive model [6] for a time variable for timecourse
experiments – is compared with a model that includes only the potential confounders. For
the two models fit for each transcript k, Ballgown calculates the statistic

F =
RSS0−RSS1

P1−P0

RSS1

n−P1

where RSS0 represents the residual sum of squares from the model without group or time
covariates, RSS1 represents the residual sum of squares from the model including the co-
variates of interest, P0 is the number of covariates in the smaller model, P1 is the number
of covariates in the larger model, and n is the total number of samples. Under the null
hypothesis that the larger model does not fit the data significantly better than the smaller
model, this statistic follows an F distribution with (P1 − P0, n − P1) degrees of freedom,
so p-values can be generated by comparing the two models for each transcript k [10]. We
control for multiple testing using standard FDR controlling procedures [16].
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3 Simulation studies

We performed two separate simulation studies. For both studies, reads were generated
from 2745 annotated transcripts on Chromosome 22 from Ensembl [5], using genome build
GRCh37 and Ensembl version 74. Data was generated for 20 biological replicates, divided
into two groups of 10, where 274 transcripts were randomly chosen to be differentially ex-
pressed (at a 6x increase in expression level) in one of the two groups, randomly chosen.

The first simulation study is presented in the main manuscript and was set up as follows:

• Expression was measured in FPKM. Each transcript’s mean FPKM value was set to be
the mean nonzero FPKM value from a randomly selected transcript with mean FPKM
larger than 100 in the assembled GEUVADIS dataset.

• We defined a log-log relationship between a transcript’s mean expression level and the
variance of its expression levels:

log variance = 2 log mean + 0.5

in order to encompass biological and technical variability.

• Then, for each transcript, we randomly drew FPKM expression values from a log-
normal distribution with the pre-set mean and variance. For the differentially expressed
transcripts, the pre-set mean FPKM was 6 times larger in one group than in the other.

• For each transcript, we also set a sample’s expression level to 0 with probability p0,
which was estimated from the GEUVADIS data: for each simulated transcript, p0 was
randomly drawn from the empirical distribution of the proportion of samples with zero
expression, over transcripts in the GEUVADIS dataset with mean FPKM larger than
100.

• To translate the pre-set FPKM value into a number of reads to be generated from
a transcript for a given sample, we used the definition of FPKM and calculated the
number of “fragments” (reads) that should be generated from a transcript by multi-
plying the set FPKM value by the transcript’s length over 1000, then multiplying by
an approximate library size of 150,000 reads, over 1 million.

This simulation setup made it such that more reads were generated from longer transcripts,
as is expected with RNA-seq protocols.

A second simulation was also conducted with a slightly simpler setup:

• Expression was defined directly by the number of reads being generated from each
transcript (instead of using FPKM).

• The mean number of reads generated from each transcript was set to be 300, unless
the transcript was randomly selected to be overexpressed in one group, in which case,
that group’s mean read number for that transcript was 1800.
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• The actual number of reads to be simulated from a transcript was drawn from a negative
binomial distribution with mean µ = 300 or 1800, and size equal to 0.005µ (so, 1.5
for µ = 300 and 9 for µ = 1800). Note that in the negative binomial distribution, the
variance is equal to µ+ µ2/size.

• Each sample’s read counts were scaled and rounded such that approximately 600,000
reads were generated per sample.

For both these scenarios, the specified number of reads was then generated from transcripts
using the polyester package. These simulated reads were then processed through the Tophat2
-Cufflinks -Cuffdiff2 pipeline and the Tophat2 -Cufflinks -Tablemaker -Ballgown pipeline
(Figure 1a, main manuscript).

Figure 1: Simulation results for transcript-length-independent simulation a. His-
tograms of p-values from the transcript-length-independent simulation study, comparing the
10 cases to the 10 controls. In this study, Cuffdiff2 performed adequately; the conserva-
tive bias observed in more realistic data (Figure 2(c), main text) was not seen here. d. A
plot of the ranking of transcripts from most differentially expressed to least (x-axis) versus
the number of truly differentially expressed transcripts (y-axis), using the transcript-length-
independent simulated dataset. Among the top 100 transcripts ranked by each method
for differential expression, 98 are truly differentially expressed for Cuffdiff2 and 84 are for
Ballgown.

Model fitting in simulated data

In the simulated data we fit the nested set of linear models:
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HA : log2(FPKMi + 1) = β∗0 + β∗1grpi + η∗q75i + ε∗i
H0 : log2(FPKMi + 1) = β0 + ηq75i + εi

where grpi is the value of the group indicator for sample i and q75 is a library-size
normalizing constant equal to the sum of the nonzero FPKM values to the 75th percentile
[12].We then tested the hypothesis H0 : β∗1 = 0 versus the alternative that the coefficient
was non-zero. For the analysis with average coverage we replaced FPKMi with acovi in the
above equations.

Results from transcript-length-independent simulation

In this second, less-realistic simulation scenario, Cuffdiff2 and Ballgown performed compa-
rably (Supplementary Figure 1).

4 Data Analyses

Preprocessing GEUVADIS

We downloaded the FASTQ files from the GEUVADIS project from http://www.ebi.ac.

uk/ena/data/view/ERP001942 and ran the pipeline Tophat2 -Cufflinks -Cuffmerge-Tablemaker
to create the set of tables described in the previous section. We then created a Ball-
gown object using the Ballgown package and matched the phenotype data available from
http://www.ebi.ac.uk/ena/data/view/ERP001942 along with additional QC data.

InSilico DB analysis

InSilico DB [3] includes processed data from public experiments on the Sequence Read
Archive. We downloaded the Cuffdiff2 output from the cancer versus normal and devel-
opmental data sets from InSilico DB on March 5th, 2014. We extracted the p-values for
differential expression for the cancer versus normal comparison[7] and the embryonic stem
cells versus preimplantation blastomeres data. We also reformatted the FPKM values from
this analysis and applied the linear models included in the Ballgown package to perform
the comparison. The versions and parameters for the software used by InSilico DB were
cufflinks, cuffmerge, cuffdiff: v 2.0.2, cufflinks -p 6 -q, tophat: v 2.0.4 –mate inner dist 80
–no-coverage-search (personal communication Alain Coletta from the InSilico DB).

RIN analysis

We filtered to the 464 unique replicates as described by GEUVADIS [9] and analyzed only
transcripts with FPKM > 0.1. We first searched for differential expression with respect to
RNA quality (RIN) using the following set of nested linear models to each transcript.

8

http://www.ebi.ac.uk/ena/data/view/ERP001942
http://www.ebi.ac.uk/ena/data/view/ERP001942
http://www.ebi.ac.uk/ena/data/view/ERP001942


HA : log2(FPKMi + 1) = β∗0 +
4∑

t=1

β∗t splinet(RINi) +
5∑

p=1

γ∗p1(Popi = p) + η∗q75i + ε∗i

H0 : log2(FPKMi + 1) = β0 +
5∑

p=1

γp1(Popi = p) + ηq75i + εi

Here i indicates sample and the subscript for transcript has been suppressed for clarity.
H0 denotes the null model and HA denotes the alternative. The first set of terms encode a
natural cubic spline fit with 4 degrees of freedom between the RIN values and the FPKM
levels; the term splinet(RINi) refers to the tth B-spline basis term for sample i. The second
set of terms encode a factor model for the relationship between population and FPKM and
the last term is a library size normalization term that consists of the sum of the non-zero
FPKMs up to the 75th percentile for that sample [12]. We then tested the hypothesis that
H0 : β1 = β2 = β3 = 0 versus the alternative that at least one coefficient was non-zero. All
transcripts with a Q-value [17] less than 0.05 were called significant.

Next we attempted to identify transcripts that were significantly better explained by
a non-linear polynomial fit, rather than a linear trend. We fit the following nested set of
models:

HA : log2(FPKMi + 1) = β∗0 +
3∑

t=1

β∗tRIN
t
i +

5∑
p=1

γ∗p1(Popi = p) + η∗q75i + ε∗i (2)

H0 : log2(FPKMi + 1) = β0 + β1RINi +
5∑

p=1

γp1(Popi = p) + ηq75i + εi (3)

and tested the hypothesis that H0 : β2 = β3 = 0 versus the alternative that at least one of
the higher order polynomial coefficients was nonzero. Again, all transcripts with a Q-value
[17] less than 0.05 were called significant.

The transcripts in the figure were statistically significant at the FDR 5% level for this
second analysis. In the plots, the curves represent the fitted values for the average library size
within each population. We show one example each of a positive and negative relationship
between expression and RIN. While there were several examples of associations in both
directions, there were more positive associations, as expected (Supplementary Figure 2).

eQTL analysis

We downloaded genotype information for the GEUVADIS cohort from ftp://ftp.ebi.ac.

uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/genotypes/. We fil-
tered to only SNPs with a minor allele frequency greater than 5%. We used the processed
transcriptome data from Tablemaker as described above. We removed samples that were
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t−statistics for linear RIN coefficients
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Figure 2: Distribution of t-statistics for the linear RIN term for GEUVADIS
transcripts. These are moderated t-statistics calculated with limma for the β1 coefficient in
model (3), indicating directionality of the RIN-FPKM relationship. We observe associations
in both directions, but as expected, there are more positive associations.
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Figure 3: Distribution of statistical significance scores for all cis-eQTL tests a. P-
value histogram for all p-values from cis-eQTL tests, the estimated fraction of null hypotheses
is 94.2%. b. QQ-plot of -log10(p-values) versus theoretical quantiles shows no gross deviation
from expected behavior.
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sequenced multiple times according to the protocol described by GEUVADIS [9]. We cal-
culated the first three principal components of the genotype data using the Plink software
[13]. We filtered to transcripts with an average FPKM > 0.1 and took the log2 transform
of the FPKM values. We then used the MatrixEQTL package [14] to perform the eQTL
analysis testing an additive linear regression model for the SNPs adjusting for three expres-
sion prinicipal components and three genotype principal components. We filtered to only
transcript-SNP pairs that were no more than 1000Kb apart.

We recorded the histogram of p-values from all transcript-SNP pairs. We calculated an
estimate of the fraction of null hypotheses based on the distribution of observed p-values [17]
and obtained an estimate of π̂0 = 0.942. The p-value histogram (Figure 3a) and QQ-plot of
-log10(p-values) (Figure 3b) versus their theoretical distribution under the null do not show
any gross deviation suggesting unmodeled confounding [4].

For the transcript overlap analysis we downloaded the list of significant cis-eQTL from
ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/genotypes/

for the EUR and YRI populations. We identified all Ensembl genes overlapped to any degree
by each assembled transcript. We then calculated the number of gene-SNP pairs in common
between the GEUVADIS EUR and YRI analyses and our eQTL analysis.

5 Software

1. Ballgown - https://github.com/alyssafrazee/ballgown/ Installation instructions
and tutorial for use are available at https://github.com/alyssafrazee/ballgown/

blob/master/README.md

2. Tablemaker - https://github.com/alyssafrazee/ballgown/tree/master/tablemaker
Installation instructions available at https://github.com/alyssafrazee/ballgown/
blob/master/README.md

3. polyester - https://github.com/alyssafrazee/ballgown/tree/master/polyester
Installation instructions for polyester are here: https://github.com/alyssafrazee/
ballgown/blob/master/polyester/README.md

6 Scripts and Data

Scripts and data will be available at: https://github.com/alyssafrazee/ballgown_code/
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