
Fr
eq
ue
nc
y

request time inms

Fr
eq
ue
nc
y

request time inms

Source Version Url

Source Version # of variants Url

myvariant.info (/github/sulab/myvariant.info/tree/master) / docs (/github/sulab/myvariant.info/tree/master/docs)
/ ipynb (/github/sulab/myvariant.info/tree/master/docs/ipynb)

MyVariant.info and MyGene.info Use Case
The following R script demonstrates the utility of the MyVariant.info and MyGene.info R clients to annotate variants and prioritize
candidate genes in patients with rare Mendelian diseases. This specific study uses data obtained from the database of phenotype and
genotype (dbGaP) study. FASTQ files generated by Ng et al for the Miller syndrome study
(http://www.ncbi.nlm.nih.gov/pubmed/19915526) were processed according to the Broad Institute’s best practices. Individual samples
were aligned to the hg19 reference genome using BWA-MEM 0.7.10. Variants were called using GATK 3.3-0 HaplotypeCaller and
quality scores were recalibrated using GATK VariantRecalibrator.

Initial Library Imports and Data Loading

In [1]: library(myvariant, quietly=TRUE)
library(mygene, quietly=TRUE)
library(VariantAnnotation, quietly=TRUE)
library(GO.db, quietly=TRUE)
source("https://raw.githubusercontent.com/SuLab/myvariant.info/master/docs/ipynb/mendelian.R")
setwd("~/sulab/myvariant/vcf/recal")
vcf.files <- paste(getwd(), list.files(getwd()), sep="/")

Attaching package: ‘BiocGenerics’

The following objects are masked from ‘package:parallel’:

 clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
 clusterExport, clusterMap, parApply, parCapply, parLapply,
 parLapplyLB, parRapply, parSapply, parSapplyLB

The following object is masked from ‘package:stats’:

 xtabs

The following objects are masked from ‘package:base’:

 anyDuplicated, append, as.data.frame, as.vector, cbind, colnames,
 do.call, duplicated, eval, evalq, Filter, Find, get, intersect,
 is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax,
 pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rep.int,
 rownames, sapply, setdiff, sort, table, tapply, union, unique,
 unlist, unsplit

Creating a generic function for ‘nchar’ from package ‘base’ in package ‘S4Vectors’

Attaching package: ‘VariantAnnotation’

The following object is masked from ‘package:base’:

 tabulate

Welcome to Bioconductor

 Vignettes contain introductory material; view with
 'browseVignettes()'. To cite Bioconductor, see
 'citation("Biobase")', and for packages 'citation("pkgname")'.

Loading required package: DBI

Attaching package: ‘plyr’

The following object is masked from ‘package:XVector’:

 compact

The following object is masked from ‘package:IRanges’:

 desc

The following object is masked from ‘package:S4Vectors’:

 rename

Supplementary note 1. This is the print out of the jupyter notebook at:
https://github.com/sulab/myvariant.info/blob/master/docs/ipynb/myvariant_R_miller.ipynb

vcf.files contains paths to the vcf files for each of the four patients included in this analysis. Exome sequence data from two sibs
with Miller syndrome and two unrelated affected individuals used in this vignette was provided by Ng et al. (2010) Nature Genetics
(phs000244.v1.p1) (http://www.ncbi.nlm.nih.gov/pubmed/19915526). As this is protected information, access must be requested from
dbGaP here (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000244.v1.p1) in order to run this notebook.

mendelian.R defines some helper functions that are used in the analysis occurring after annotation retrieval:

replaceWith0 - replaces all NAs in a data.frame with 0.

rankByCaddScore - for prioritizing genes by deleteriousness (scaled CADD score).

Annotating variants with MyVariant.info
The following function reads in each output VCF file using the VariantAnnotation package available from Bioconductor. Install with
biocLite("VariantAnnotation"). formatHgvs (from the myvariant Bioconductor package) is a function that reads the
genomic location and variant information from the VCF to create HGVS IDs which serve as a primary key for each variant. The
function getVariants makes the queries to MyVariant.info to retrieve annotations.

In [2]: getVars <- function(vcf.file){
cat(paste("Processing ", vcf.file, "...\n", sep=" "))

 vcf <- readVcf(vcf.file, genome="hg19")
 vcf <- vcf[isSNV(vcf)]
 vars <- rowRanges(vcf)
 vars <- as(vars, "DataFrame")
 vars$query <- formatHgvs(vcf, "snp")
 annotations <- getVariants(vars$query, fields=c("dbnsfp.genename", "dbnsfp.1000gp1.af",

"exac.af", "cadd.consequence", "cadd.phred"), verbose=FALSE)
 annotations[c('DP', 'FS', 'QD')] <- info(vcf)[c('DP', 'FS', 'QD')]
 annotations <- replaceWith0(annotations)
 annotations <- subset(annotations, !(dbnsfp.genename %in% c("NULL", 0)))
 annotations
}

vars <- lapply(vcf.files, getVars)

All genes (variants with a valid dbnsfp.genename) that are mutated amongst all four patients are examined. The following function
counts the number of genes in inp that are mutated among all four patients:

In [3]: countGenes <- function(inp) {
 ret <- subset(data.frame(table(unlist(lapply(inp, function(i) unique(i$dbnsfp.genename))))),
 Freq == 4)

cat("Genes remaining: ", paste(nrow(ret)))
 ret
}

Initial Number of Genes Mutated in All Patients

In [4]: nVars <- countGenes(vars)

Processing /Users/cyrusafrasiabi/recal/subject01_recalibrate_SNP_vqsr.vcf ...
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER
found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

Processing /Users/cyrusafrasiabi/recal/subject02_recalibrate_SNP_vqsr.vcf ...
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER
found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

Processing /Users/cyrusafrasiabi/recal/subject03_recalibrate_SNP_vqsr.vcf ...
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER
found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

Processing /Users/cyrusafrasiabi/recal/subject04_recalibrate_SNP_vqsr.vcf ...
found header lines for 3 ‘fixed’ fields: ALT, QUAL, FILTER
found header lines for 24 ‘info’ fields: AC, AF, ..., VQSLOD, culprit
found header lines for 5 ‘geno’ fields: GT, AD, DP, GQ, PL

Concatenating data, please be patient.

Genes remaining: 2441

In [5]: filter1 <- lapply(vars, function(i) subset(i, DP > 8 & FS < 30 & QD > 2))

nFilter1 <- countGenes(filter1)

2 - Filtering for Nonsynonymous and Splice Site Variants
Mendelian diseases are most likely to be caused by nonsynonymous mutations. The CADD database annotates the mutation type in
the field "cadd.consequence".

In [6]: filter2 <- lapply(filter1, function(i) subset(i, cadd.consequence %in% c("NON_SYNONYMOUS", "STOP_GAINED", "STOP_
"CANONICAL_SPLICE", "SPLICE_SITE")))

nFilter2 <- countGenes(filter2)

3 - Filtering for Allele Frequency Annotated by ExAC
The third filter keeps rare variants according to the ExAC data set with allele frequency < 0.01. Rare diseases are likely caused by
mutations that have not been documented yet.

In [7]: filter3 <- lapply(filter2, function(i) subset(i, exac.af < 0.01))

nFilter3 <- countGenes(filter3)

4 - Filtering for Allele Frequency Annotated by 1000 Genomes Project
The fourth filter keeps rare variants according to the 1000 Genomes Project with allele frequency < 0.01.

In [8]: filter4 <- lapply(filter3, function(i) subset(i, sapply(dbnsfp.1000gp1.af, function(j) j < 0.01)))

top.genes <- countGenes(filter4)

5 - Filtering by GO Biological Process Annotation using MyGene.info
Since Miller Syndrome is known to be an inborn error of metabolism, this filter keeps only genes involved in metabolic processes
according to their GO biological process annotation. To accomplish this, GO biological process annotations are pulled for each
remaining gene using the MyGene.info R client, which can be installed from Bioconductor (biocLite("mygene")). Here, the
queryMany function is used, requesting the necessary annotations using the fields parameter.

In [9]: goBP <- data.frame(queryMany(top.genes$Var1, scopes="symbol", species="human", fields=c("go.BP", "name", "MIM",

The Bioconductor package go.DB is used to find all genes with a GO biological process annotation that is a descendant of
GO:0008152 - the GO id for metabolic process.

In [10]: miller.bp <- lapply(goBP$go.BP, function(i) unlist(i$id))
bp.ancestor <- lapply(miller.bp, function(i) sapply(i, function(j) "GO:0008152" %in% unlist(GOBPANCESTOR[[j]])))
candidate.genes <- top.genes$Var1[sapply(bp.ancestor, function(i) TRUE %in% i)]
cat("Genes remaining: ", length(candidate.genes))

Prioritizing genes
The remaining five genes can be prioritized according to CADD (deleteriousness) score. rankByCaddScore extracts the average
CADD scores of the variants in each gene and ranks in descending order.

Genes remaining: 2308

Genes remaining: 1917

Genes remaining: 18

Genes remaining: 9

Finished

Genes remaining: 5

In [11]: ranked <- rankByCaddScore(candidate.genes, filter4)
ranked

This analysis highlights the use of the MyVariant.info and MyGene.info annotation services to narrow the candidate gene list from
2441 genes to 5 - representing a significant decrease in the burden of manual biological analysis.

Out[11]: gene cadd.phred

1 DHODH 26.81

2 CTBP2 21.385

3 PIK3R3 20.7

4 CDC27 18.545

5 CDON 10.02

