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Supplementary Methods

Sample. The Regional Committee for Medical and Health Research Ethics of South

Norway approved the study. We drew the sample mainly from the first wave of 2 on-

going longitudinal projects by the Research Group for Lifespan Changes in Brain and

Cognition at the University of Oslo, namely Neurocognitive Development, and

Cognition and Plasticity through the Lifespan. Participants were recruited through

newspaper ads, among students and employees at the University of Oslo, and from

local schools. Further details regarding recruitment and enrolment can be found

elsewhere (1-3). Participants under 12 years of age gave oral informed consent,

while written informed consent was obtained from all participants from 12 years of
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age and from a parent or guardian for participants below 18 years of age. Parents of
children younger than 16 years, and all participants aged 16 years or older, were
screened with standardized health interviews at enrolment to ascertain eligibility. We
required participants to be right-handed, fluent Norwegian speakers, and have
normal or corrected to normal vision and hearing. Self-reported neurological or
psychiatric conditions known to affect normal cerebral functioning, including clinically
significant stroke, traumatic brain injury, untreated hypertension, diabetes, use of
psychoactive drugs within the last 2 years, or subjective concerns about cognitive
status including memory function, were used as exclusion criteria. All participants
above 20 years of age scored < 16 on the Beck Depression Inventory (4) and
participants above 40 years of age scored = 26 on Mini Mental State Examination (5).
A neuroradiologist evaluated and deemed all scans free of significant injuries or
conditions. Based on the existence of a T1-weighted and a T2-weighted scan for
each individual, and after quality control excluding a total of 18 participants due to
overfolding movement articfacts in T1w, T2w, or both, or missing/incomplete T2w
scan, we included 484 participants: 263 females (54.3%), mean age (SD) = 38.3
(22.5) years, median age= 34.6 years, age range = 8.2-85.4 years. Of these, 73 new
participants were included relative to our previous work (6): 37 females (50.7%),
mean age = 15.4, SD = 3.3, median age= 15.4, min-max age = 9.1-21.6. All
participants underwent assessment of general cognitive abilities by the Wechsler
Abbreviated Scale of Intelligence (WASI) (7). Estimated mean full-scale intelligence

quotient for the entire sample was 112.9 (SD = 9.9, range = 82-145).

MRI Data Acquisition. All scans were acquired using a 12-channel head coil on a
1.5-T Siemens Avanto scanner (Siemens Medical Solutions, Erlangen, Germany) at
Oslo University Hospital Rikshospitalet. For each participant, the T1w and the T2w
scans was acquired in the same session. The T1w volumes were acquired using a
3D T1w magnetization-prepared rapid gradient echo (MPRAGE) sequence with the
following parameters; repetition time (TR) = 2400 ms, echo time (TE) = 3.61 ms,
inversion time (T1) = 1000 ms, 8° flip angle (FA), bandwidth = 180 Hz/pixel, field of
view (FOV) = 240 mm, matrix = 192 x 192 x 160, 1.25 x 1.25 x 1.2 mm voxels. The
T2w volumes were acquired using a 3D T2w sampling perfection with application
optimized contrasts using different flip angle evolutions (SPACE) sequence with the
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following parameters: TR = 3390 ms, TE = 388 ms, variable FA, bandwidth = 650
Hz/pixel, FOV = 256 mm, 1 mm isotropic voxels. One hundred seventy-four
participants (53.4% female) were scanned with a 204 x 256 x 176 matrix (mean age
(SD) = 35.2 (19.5), range = 8.2-60.6), while 310 participants (54.8% female) were
scanned with a 256 x 256 x 176 matrix (mean age (SD) = 40.0 (23.9), range = 8.5-

85.4). Both T1w and T2w scans were acquired sagittally.

Creation of T1w/T2w Maps. T1w/T2w ratio maps for each participant were created
by running the T1w and T2w images through the Human Connectome Project (HCP)
processing pipeline (8), using scripts kindly made available online by HCP
(https://qgithub.com/Washington-University/Pipelines). Via the HCP pipeline, the T1w

volumes were processed using the Freesurfer 5.3 suite

(http://surfer.nmr.mgh.harvard.edu), including intensity normalization, automated

tissue segmentation, generation of white and pial surfaces, surface topology
correction, and surface-based cortical thickness and mean curvature maps (10-16).
In the preprocessing step, we did not perform the gradient distortion correction as
scanning was performed on a conventional scanner (Siemens Avanto) compared
with the custom scanner used in the HCP (8) (we tested this additional step for one
participant, the output looked very similar). Data was gathered without field map, so
no readout distortion correction was performed. As noted in Glasser, et al. (8), this
step removes a fairly subtle readout distortion, most pronounced in regions with high
BO inhomogeneity due to magnetic susceptibility differences (orbitofrontal cortex and
inferior temporal cortex especially) (9). However, interpretation of effects, or lack
thereof, in these areas should be made with caution.

The T2w image was registered to the T1w image by using Freesurfer’s bbregister, a
within-subject, cross-modal registration using a boundary-based cost function
constrained to be 6 degrees of freedom (rigid body) (17). As in our previous work, but
here via the HCP pipeline, the resulting linear transform was applied by use of FSL’s
applywarp tool using spline interpolation in order to minimize the white matter and
cerebrospinal fluid (CSF) contamination of GM voxels (18). The T1w volume was
divided on the aligned T2w volume, creating a T1w/T2w ratio volume.
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To estimate regional T1w/T2w ratio across the brain, we used a multi-modal
parcellation of the cortex into 180 symmetrical areas per hemisphere (19). The
parcellation was mapped into each participant’s native space to minimize geometric
deformation of the data by inverting the warp from each participant to a common
surface using a non-rigid high-dimensional spherical averaging method to align
cortical folding patterns (20). Multimodal Surface Matching (21) was not performed as
i) participants between 40 and 60 did not having a resting-state functional MRI scan,
and ii) as the T1w/T2w maps were being used as a measure of interest, we did not
want to include these data in the registration process, and thereby potentially

influence the registration based on differences in T1w/T2w values.

Intracortical Depth. From the resulting 360 cortical surface regions, the T1w/T2w
ratio was extracted using the wb_command -volume-to-surface-mapping using cubic
splines interpolation. We sampled T1w/T2w values vertex-wise from the WM/GM
boundary, from 9 intracortical depths at 10% intervals, and at the grey matter
(GM)/CSF boundary (pial), resulting in 11 surfaces. Each surface was obtained by
using the -surface-cortex-layer command, which takes effects of folding into account,
and thus follows the cortical layers more closely. Fig. S8 shows higher T1w/T2w
values at lower depths. As the surfaces near the WM/GM boundary and the GM/CSF
boundary, respectively, suffer more from partial voluming effects (22), that is voxels
being composed of different tissue types, we focused on the 30-70% depths (22, 23).
From these middle depths, we chose the depth in which the age-relationships
showed the lowest residual sums of squares (across regions), which was the 70%
depth from the WM/GM boundary (Fig. S9). Although we cannot precisely determine
cortical layers, and at this resolution we obtain information from more than one layer,
the 70% depth corresponds (on average) to layer 3 (24). Layer 3 has intracortical
projections, that is, horizontal corticocortical projections traveling within the grey
matter of the cerebral cortex based on work in the dorsolateral prefrontal cortex (25).
Although all pyramidal neurons have connections within the cerebral cortex, the
prominent source of distant intracortical projections arise mainly from pyramidal
neurons within layers 2 and 3, and a sub-set of neurons in layers 5 and 6 (24).
Further, layer 2 and superficial layer 3 have been shown to contain intrinsic pyramidal
neuron projections (in prefrontal areas 9 and 46) which make long distance lateral
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connections to patches of tissue in layers 1-3. Laterally travelling fibers are primarily
in layers 2 and superficial 3, with oblique descending collaterals through layer 3.
Pyramidal neurons of layer 3 also give rise to prominent horizontal projections with

periodic terminations in layers 1-3 (see for instance figure 17 in (26)).

In each of the 360 regions, outliers within each region for a single participant, and
across participants, were identified as values exceeding the following formula using
first (Q1), and third (Q3) quantiles, and the interquartile range (IQR): Q1-IQR*1.5,
and Q3+IQR*1.5. These values were excluded.

Correction for T2w differences. To take into account the minor difference in
acquisition parameters for the T2w scans (174 participants were scanned with a 204
x 256 x 176 matrix, while 310 participants were scanned with a 256 x 256 x 176
matrix), we estimated the effect of matrix in the developmental part of the sample
where participants of overlapping ages were scanned with either one of the matrices
(n204 = 67 (47.7% females), mean age (SD) = 13.4 (2.9), min-max = 8.2-18 versus
nase = 72 (50% females), mean age (SD) = 13.7 (2.6), min-max = 8.5-18). The effect
was estimated running a robust regression using the Andrews weight function and
the default tuning constant of 1.339 as implemented in Matlab, yielding coefficient
estimates that are approximately 95% as statistically efficient as the ordinary least-
squares estimates (provided the response has a normal distribution with no outliers).
Age, sex, and an interaction term of age x matrix dimension were included as
covariates of no interest. The estimated effect was then added to the 174 participants
scanned with the 204 x 256 x 176 matrix.

Estimations of Growth Curve Trajectories. To fit age trajectories without assuming
a specific shape, for instance, linear, or quadratic, of the lifespan relationship a priori,
we chose to use penalized cubic B-splines (27, 28). Eight piecewise cubic B-spline
basis functions were used, which was the lowest possible value in which all 360
models produced a fit. Fig. $S10 shows a penalized cubic B-spline growth curve fitted
to simulated data, and the 8 underlying basis functions, multiplied by their respective
coefficients. The fitted growth curve stem from a weighted sum of these basis
functions (see also Alexander-Bloch, et al. (29)). The knots were placed at quantiles
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of the distribution of unique age values. The value for the smoothing parameter
yielding appropriate degree of smoothness was found using restricted maximum
likelihood (REML) (30). REML was chosen as REML appear less prone to local
minima than the generalized cross validation (30), which resulted in a smoother
derivative, and thus milestone estimates less affected by minor variations. Note that
this choice effectively imposes prior beliefs about the correct model. For instance, in
the extreme case, a model passing through all data points would a priori be
considered as not biologically plausible as it would not transition smoothly across the
age range. Thus, although the model structure allows considerable flexibility, we
chose to penalize excessively fluctuating models, i.e. that are not biologically
plausible (27). The median effective degrees of freedom was 5.7 (range = 3.5-6.9).

The derivative of the fitted penalized cubic B-spline growth curve was obtained by
calculating the slope at each point along the curve using the diff function in R.
Specifically, the derivative was taken as the differences (Ay) between the predicted
growth curve (using the predict function) from i) one set of age values, and ii) a set of

slightly increased (0.08 years) age values, divided by this 0.08 increment in age (Ax):

Ay

A Or Z—z . This calculation yielded a point estimate at each point along the growth

curve. We wanted to know at which ages the increases or decreases were sufficient
to be considered statistically significant. Therefore, we estimated 99.99% confidence
interval of the derivative. This level was used in order to yield conservative estimates,
as the confidence interval is correct at each point, but liberal if looking at several
points (that is, not corrected for familywise error). These confidence intervals were
obtained as implemented in predict.gam (31) in R (https://cran.r-project.org), using
the Bayesian posterior covariance matrix, and multiplying the derivatives (in matrix
form, for each smooth term) with this covariance matrix, before multiplying this
product with the derivatives. To obtain the standard error for the entire spline, and not
for each of the basis functions that comprise the spline, the resulting values were

summed across spline terms, and their square root taken.

Based on the confidence interval of the derivative, we extracted 3 curve features, or
milestones, namely age at peak growth, age at onset of stability, and age at onset of
decline. Peak growth age was defined as the maximum positive value. Onset of
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stability age was the first point showing a non-significant slope, that is, the age at
which the lower confidence interval crossed zero for the first time. Onset of decline
age was the point where the curve again showed a significant slope, that is, the age
at which the upper confidence interval crossed zero. We also estimated cross-
sectional measures of the rate of growth, and the rate of decline (Fig. S1). For the
rate of growth, we extracted the derivative at peak growth age. The rate of decline
was also extracted from the derivative, at age A in the following manner: the sum of i)
onset decline age, for instance 60 years, and ii) the age at the halfway point (50%)
between a) onset decline age, and b) maximum age in the sample, for instance: (85-
60) x 0.5 = 12.5, which in this example would yield A =60 + 12.5 = 72.5 years as the
age of measurement. As the derivative is the slope between 2 points, all values were
taken as the average between the value and the successive value. The procedure of
estimating the spline, calculating the derivative and confidence intervals, and
obtaining milestones was repeated for each of 360 regions.

Test of unimodality. For each of the milestone distributions, we tested
forunimodality using Hartigans' dip test statistic for unimodality (32) in R using the
diptest package. As the dip test yields very conservative p-values (33), we simulated
P values from the unimodal distribution closest to the data (34) using the fpc
package. An indication of non-unimodality, that is, at least bimodal distributions was
deemed present if the tests were significant (P < 0.05). To further validate this result,
we used an expectation—maximization (EM) algorithm to fit Gaussian finite mixture
models with 1 and 2 components (a maximum of 2 components would provide proof
of concept, and not be liable to over-fitting) as implemented in the R package mclust,
and tested for best fit using a bootstrap likelihood ratio test with 10000 bootstraps.
We fitted an EM algorithm (Fig. 2B), as employed in the R package mixtools which
yielded parameters for mu and sigma, for visualization. The fit was qualitatively
deemed good (except for the second mode in M3, which, however, clearly stood out),
and we proceeded with exploratory analyses dichotomizing the 3 milestones. The
age used to separate the two waves in each distribution was obtained by visual
inspection of the point where the density functions crossed (the second mode in M3

was identified as the late wave).
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To describe the cognitive functions of regions showing the different wave properties

we used NeuroSynth (http://neurosynth.org), a data-driven tool that mines the

published neuroimaging literature and provides terms most likely to be used in
publications alongside specific MRI coordinates (35). For this study we passed the
two wave maps (early and late) for each milestone to the NeuroSynth decoder and
visualised the top 25 terms related to the highlighted regions as a word cloud. The
size and colour saturation of the words in Fig. 2D correspond to the frequencies
associated with each term.

Comparison with the histological cytoarchitectural map of von Economo and
Koskinas. Following van den Heuvel, Scholtens, Feldman Barrett, Hilgetag and de
Reus (36) and Vertes, et al. (37), we explored the relationship between cortical
histology and the three key milestones. To this end, based on Scholtens, de Reus,
de Lange, Schmidt and van den Heuvel (38) and Solari and Stoner (24), we assigned
each of the 360 regions to 1 of 5 cytoarchitectonic types classified according to the
scheme of von Economo and Koskinas (39), reflecting the 5 structural types of
isocortex, namely homotypic, or type 2, 3 and 4, and heterotypic, or type 1 agranular
and type 5 granular. Again following Vertes, et al. (37), as the original classification of
structural types does not discriminate between true six-layered isocortex, and
mesocortex or allocortex, we defined two additional subtypes: limbic cortex which
included the entorhinal, retrosplenial, presubicular and cingulate cortices, and thus
primarily constitutes allocortex, and the insular cortex which contains granular,
agranular and dysgranular regions, and is therefore not readily assigned a single
structural type. Structural classes were manually assigned to each region in
Scholtens et al.’s parcellation, based on Figure 3 in Solari and Stoner (24), Figure 1F
in Vertes, et al. (37), and anatomical landmarks. Each of the 360 used here was then
assigned a class based on overlap with the Scholtens et al. parcellation. In cases of
overlap with more than one class, the region was assigned the class with which it
overlapped the most.

Structural Network Analyses. To investigate how the milestones, which are local in
nature, might relate to global network properties of the brain, we employed a
structural covariance approach (40). We correlated T1w/T2w for each region with all
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other regions, across participants between the ages of maturity and decline onset in
the global curve (see Fig. 1B; 37 and 69 years, respectively), that is, a period with
relative stable T1w/T2w levels. This procedure yielded a 360x360 connectivity
matrix, which was binarized employing a minimum spanning tree approach followed
by global thresholding, retaining 10% of the strongest connections or edges (Fig.
S6A) (41). From this model, we assessed two of the most common network metrics,
namely degree and modularity. These analyses were carried out in Matlab
(https://www.mathworks.com) using the Brain Connectivity Toolbox (42). Degree
refers to the number of edges for each region (node). The degree distribution was fat-
tailed (Fig. S6C), indicating the presence of high-degree regions, so-called hubs.
Modularity measures community structure, or to what extent nodes aggregate into
smaller groups hallmarked by being more interconnected between members of the
groups than across groups. Here, modularity was calculated using the Louvain
algorithm (43), using consensus clustering (44). The choice of resolution parameter
for modular decomposition, y, which usually is set to 1, was empirically defined by
finding a local minimum for nodal versatility of modular affiliation (45), to identify
values of y at which nodes are consistently assigned to the same module. After
calculating versatility from y = 0.1 to 4, with 0.01 increments, we chose the gamma
which minimized versatility, here y = 1.12. Based on the final community partition
(Fig. S6B), we also evaluated the intra- and intermodule degree, that is connections
within a node’s community, and across other communities, respectively. A network
representation of the structural connectivity (Fig. 4ii) was visualised using NetworkX,
version 2.1 (https://networkx.github.io).

Statistical Analyses. Relationships between various node measures (for instance
average T1w/T2w, and milestones) were tested using Spearman’s rank correlation,
except between rate of maturation and decline, where a linear regression was
performed. To test for differences in rates of growth and decline, respectively,
between early and late waves across the 3 milestones, we calculated 95%
confidence intervals. In the cases where the confidence interval overlapped, we
tested for differences between waves by Wilcoxon rank sum test. The same
approach was used to test for differences in the degree measures between waves.
To test for the differences across cytoarchitectonic classes, we employed Kruskal-

10
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Wallis tests by rank, a non-parametric alternative to an analysis of variance

(ANOVA). Here, to account for the multiple tests performed, false discovery rate

(FDR) correction was applied using the method of Benjamini, and Yekutieli (46) via

the p.adjust function in R.

Supplementary Tables

Supplementary Table 1

Rate (x 10?) Degree
Maturation Decline Total Intramodular | Intermodular

M1 | Wave1 | 1.56 [1.44,1.69] |-1.04 [-1.21,-0.90] | 11 [8,17] 6 [5,9] 5[3,9]

Wave2 | 1.14[1.09,1.19] | -0.76 [-0.84,-0.68] | 41 [37,45] | 21 [19,23] 19 [17,22]
M2 | Wave1 | 1.31[1.26,1-36] | -0.93 [-1.01,-0.85] | 35[31,40] | 19[17,21] 16 [14,19]

Wave2 | 0.86 [0.79,0.93] | -0.40[-0.48,-0.32] | 39 [31,47] | 20 [16,24] 19 [14,24]
M3 | Wave1 | 1.45[1.39,1.52] | -1.25[-1.34,-1.16] | 31 [26,36] | 17 [15,20] 14 [11,18]

Wave2 | 0.99[0.94,1.04] | -0.40[-0.47,-0.34] | 41 [35,46]" | 21 [18,24]* 20 [17,23)

95% confidence intervals were calculated using the adjusted bootstrap percentile

method (10000 bootstraps replicates) using the R package rcompanion.
W Wilcoxon rank sum test between wave 1 and 2: W = 13427, P = 0.006 (two-sided).
XW = 14224, P = 0.050.
YW = 13496, P = 0.006.

Supplementary Figures

11
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Fig. S1. Derivative of average curve in Fig. 1B (main text), showing rate of growth
(RG), and rate of decline (RD) points. The rate of growth was obtained from the point
of peak growth, and RD was obtained at the halfway-point (50% of the distance)

between the onset of decline age and the maximum age in the sample.
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Fig. S2. Surface maps showing anterior and posterior views of peak growth age,

onset stability age, and onset decline age (see also Fig. 2A in main text).
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Peak growth age Onset stability age Onset decline age
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Fig. $3. Quantile-quantile plots for age at peak growth, age at onset, and decline
onset. Solid grey line passes through the first and third quantile, and dotted grey lines
represents 95% simultaneous confidence bands (obtained using the R package

extRemes).
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Fig. S4. Surface maps showing anterior and posterior views of rates of peak growth

and decline (see also Fig. 3A in main text).
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Fig. S5. A. Surface maps showing the 180 right hemisphere regions clustered in 7
cytoarchitectonic classes: AC1/2=association cortex 1/2, IC=insular cortex, LB=limbic
cortex, PM=primary motor cortex, PS=primary sensory cortex,
PSS=primary/secondary sensory cortex. B. Bar charts, for each class and
hemisphere, showing number of regions in the early and late waves for peak growth
age, onset stability age, and onset decline age. L/R = left/right hemisphere.
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Fig. S6. A. A 360%360 structural covariance matrix based on correlations between all
regions for the 103 participants aged between the point of maturity and decline,
respectively, i.e. from 37 and 69 years. The matrix has been binarized, retaining 10%
of the strongest connections or edges, shown in black, and sorted based on the
community structure shown in B. B. Community structure, showing 5 distinct
communities, or modules, represented in different colours. C. Probability density plot
of the degree distribution. In this binary network, the degree is the number of
connections (edges) per brain region (node). The 95% confidence bands (light
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magenta) were generated by bootstrap with replacements across participants over
1000 iterations.

Peak growth age Onset stability age Onset decline age

Intramodular degree

100+

60

20|

Intermodular degree

. R L R L r
Fig. S7. Violin plots, split per hemisphere and early (magenta) and late (dark green)
wave, for peak growth age, onset stability age, and onset decline age, showing
distribution of intramodular degree, and intermodular degree. L, left hemisphere, R,
right hemisphere. Peak growth and onset of decline occurred later in particularly

global hubs (see also Fig. 4 in main text).
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Fig. S8. T1w/T2w ratio values as a function of cortical depth.
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Fig. 89. Residuals (sum of squares) from spline fitting of each of the 360 cortical

regions, plotted as a function of age, at each cortical depth, across the whole sample.

We only considered depths between 30% and 70% (in colour) to minimize influence
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of partial voluming effects from the white matter and cerebrospinal fluid, respectively

(please see text for references).

Myelin

| —— —
)O \
Age

Fig. S10. Simulated data (grey circles) of a hypothetical age-myelin relationship with
a fitted cubic B-spline (black curve), which is a weighted sum of the 8 basis functions,

multiplied by their respective coefficients, plotted below (coloured curves).
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