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1 Methodology

1.1 The model

We assume there are P groups of cells to be compared, each containing np cells (p = 1, . . . , P ).
Let Xijp be a random variable representing the expression count of a gene i (i = 1, . . . , q) in the
jp-th cell from group p. To disentangle technical from biological effects, we exploit spike-in genes
that are added to the lysis buffer and thence theoretically present at the same amount in every cell
(e.g. the 92 ERCC molecules developed by the External RNA Control Consortium, Jiang et al.,
2011). These provide an internal control or “gold standard”, to estimate the strength of technical
variability and to aid normalisation. Without loss of generality, we assume the first q0 genes
are biological and the remaining q − q0 are technical spikes. Our model builds upon BASiCS
(Vallejos et al., 2015), a Bayesian model for the analysis of single-cell RNA-seq (scRNA-seq)
data. For each population of cells p, our extended model is given by

Xijp|µip, φjp , νjp , ρijp
ind∼

{
Poisson(φjpνjpµipρijp), i = 1, . . . , q0, jp = 1, . . . , np;
Poisson(νjpµip), i = q0 + 1, . . . , q, jp = 1, . . . , np,

(1)

with νjp |sjp , θ
ind∼ Gamma(1/θ, 1/(sjpθ)) and ρijp|δip

ind∼ Gamma(1/δip, 1/δip). (2)

Here, φjp’s act as cell-specific normalising constants (fixed effects), to capture differences in input
mRNA content between cells (reflected by the expression counts of intrinsic transcripts only). A
second set of normalising constants, sjp’s, capture cell-specific scale differences affecting the
expression counts of all genes (intrinsic and technical). Among others, these relate to sequencing
depth, capture efficiency and amplification biases. However, a precise interpretation of the sjp’s
varies across experimental protocols, e.g. amplification biases are removed when using unique
molecular identifiers (Islam et al., 2014). The random effects νjp (with E(νjp |sjp , θp) = sjp and
Var(νjp|sjp , θ) = s2

jpθ) capture unexplained technical noise, which leads to a variance inflation
(with respect to Poisson sampling) of all expression counts within each group of cells. For each
population, the strength of this technical component of variability is quantified through a single
hyper-parameter θp, borrowing information across all genes and cells. A second set of random
effects ρijp (with E(ρijp|δip) = 1 and Var(ρijp |δip) = δip), capture heterogeneous expression of a
gene across cells. This is quantified through the δip’s, capturing residual over-dispersion (beyond
what is due to technical artefacts) of every gene within each group. For each group, stable
“housekeeping-like” genes lead to δip ≈ 0 (low residual variance in expression across cells) and
highly variable genes are linked to large values of δip. A novelty of our approach is the use of δip’s
to quantify changes in biological over-dispersion. Importantly — and unlike the commonly used
coefficient of variation — this avoids confounding effects due to changes in overall expression
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between the groups. Finally, the overall expression rate of a gene i in group p is denoted by µip.
These are used to quantify changes in the overall expression of a gene between groups of cells.

1.2 Prior specification

We assume prior independence between all model parameters. In Vallejos et al. (2015), an im-
proper non-informative prior is assigned to the overall expression rates µip’s. However, it does
not lead to a proper posterior distribution when all the expression counts of a gene are equal to
zero at all cells within a population. The latter often occurs when comparing distinct populations
of cells, where population-specific markers are likely to lie within this category. As an alternative,
we assign a proper prior distribution to the overall expression rates µip’s. This is given by

µip,
iid∼ log-N(0, a2

µ) for i = 1, . . . , q0, (3)

A similar prior is assigned to the biological over-dispersion parameters δip’s using

δip,
iid∼ log-N(0, a2

δ) for i = 1, . . . , q0, (4)

As discussed in the manuscript, the latter is equivalent to assigning Gaussian prior distributions
for log-fold changes (LFC) in overall expression or biological over-dispersion. These are sym-
metric with respect to the origin, meaning that we do not a priori expect changes in expression to
be skewed towards either group of cells. Moreover, this prior specification is helpful in situations
where a gene is not expressed (or very lowly expressed) in one of the groups, where the values of
a2
µ and a2

δ allow shrinkage of LFC estimates towards an appropriate range (e.g. to avoid “infinite”
LCF estimates when a gene has zero total counts within one population of cells). Importantly,
genes for which expression was detected in all populations are not affected by the choice of these
hyper-parameter values. As a default option we use a2

µ = a2
δ = 0.5.

We also assign proper prior distributions to the remaining model parameters, using

sjp ∼ Gamma(as, bs), jp = 1, . . . , np; p = 1, . . . , P (5)

θp ∼ Gamma(aθ, bθ), p = 1, . . . , P (6)

Φp ∼ npDirichlet(aΦp), Φp = (φj1 , . . . , φjnp
)′; p = 1, . . . , P (7)

By default, we set as = bs = aθ = bθ = 1 and aΦp = 1np , where 1np denotes an np-dimensional
vector of ones.

1.3 Markov Chain Monte Carlo implementation

Posterior inference is implemented via a Markov Chain Monte Carlo (MCMC) algorithm, gen-
erating draws from the posterior distribution of all model parameters. In particular, we use an
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Adaptive Metropolis within Gibbs Sampling algorithm (Roberts and Rosenthal, 2009), where
the variance of the proposal distributions are internally tuned to achieve an optimal acceptance
rate. However, sampling the random effects ρijp’s throughout the algorithm results in a slow
convergence (despite allowing conjugate updates of other model parameters). This is particularly
critical when the sample size increases. To overcome this problem, we implemented Bayesian
inference based on the marginal model obtained after integrating out the ρijp’s, i.e.

Xijp |µip, δip, φjp , νjp , θ ∼

 Neg-Binomial
(
δ−1
ip ,

φjpνjpµip

φjpνjpµip+δ−1
ip

)
, i = 1, . . . , q0, jp = 1, . . . , np;

Poisson(νjpµip), i = q0 + 1, . . . , q, jp = 1, . . . , np,
(8)

for which the associated likelihood function is given by q0∏
i=1

P∏
p=1

np∏
jp=1

Γ(xijp + 1/δip)

Γ(1/δip)xijp !

(
1/δip

φjpνjpµip + 1/δip

)1/δip ( φjpνjpµip

φjpνjpµip + 1/δip

)xijp × (9)

 q∏
i=q0+1

P∏
p=1

np∏
jp=1

(νjpµip)
xijp

xijp !
e−νjpµip

 .
Under this specification, the full conditionals required for the implementation correspond to

π(µip| · · · ) ∝
µ

∑np
jp=1 xijp

ip∏np
jp=1(φjpνjpµip + 1/δip)

xijp+1/δip
× exp

{
− 1

2a2µ
(log(µip))

2

}
, (10)

π(δip| · · · ) ∝

 np∏
jp=1

Γ(xijp + 1/δip)

Γ(1/δip)

(1/δip)
1/δip

(φjpνjpµip + 1/δip)
xijp+1/δip

× exp

{
− 1

2a2δ
(log(δip))

2

}
, (11)

π(sjp | · · · ) ∝ s
as−(1/θp)−1
jp

exp

{
−

νjp
sjpθp

− sjpbs
}
, (12)

π(νjp | · · · ) ∝

[
q0∏
i=1

ν
xijp
jp

(φjpνjpµip + 1/δi)
xijp+1/δip

] q∏
i=q0+1

ν
xijp
jp

e−νjpµi

 ν(1/θp)−1
jp

e−νjp/(θpsjp ), (13)

π(θp| · · · ) ∝

(∏np
jp=1(νjp/sjp)

)1/θp
Γnp(1/θp)

θaθ−(np/θp)−1
p e

−(1/θp)
∑np
jp=1(νjp/sjp )−bθθp (14)

π(Φp| · · · ) ∝
∏q0
i=1 φ

∑np
jp=1 xijp

jp∏q0
i=1

∏np
jp=1(φjpνjpµip + 1/δip)

xijp+1/δip
× π(Φp), with π(Φp) as in (7), (15)

for i = 1, . . . , q0, jp = 1, . . . , np and p = 1, . . . , P . To sample from the posterior distribution of
all model parameters, we use Gaussian Random walks for these full conditionals (10)-(14) and
Dirichlet proposals for the full conditional in (15).

Our implementation is freely available as an R package R Core Team (2014), using a combi-
nation of R and C++ functions through the Rcpp library (Eddelbuettel et al., 2011). This can be
found in https://github.com/catavallejos/BASiCS.
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1.4 Post-hoc offset correction of global shifts in mRNA content between groups

To ensure identifiability of all model parameters, we introduce the identifiability restriction

1

np

np∑
jp=1

φjp = 1, for p = 1, . . . , P . (16)

This restriction does only apply to cells within each group. As a consequence, if they exist, global
shifts in cellular mRNA content between groups (e.g. if all mRNAs where present at twice the
level in one population related to another) are absorbed by the µip’s. To correct this bias, we
adopt the 2-step strategy described below.

(i) Estimation step. Model parameters are estimated under the identifiability restriction in
(16), using the MCMC algorithm described in Section 1.3. For each parameter, this al-
gorithm generates a sample of N random draws from the associated posterior distribu-
tion. In particular, for each µip and φjp , we denote these samples by {µ(1)

ip , . . . , µ
(N)
ip } and

{φ(1)
jp
, . . . , φ

(N)
jp
}, respectively.

(ii) Offset correction step. Once the model has been fitted, global shifts in input mRNA
content are treated as a fixed offset and corrected post-hoc. For this purpose, we use the
sum of overall expression rates

∑q0
i=1 µip (intrinsic genes only) as a proxy for the overall

mRNA content within each group. Without loss of generality, we use the first group of
cells as a reference population and define population-specific offset effects as

Λp =

(
q0∑
i=1

µip

)/(
q0∑
i=1

µi1

)
, p = 1, . . . , P (17)

To estimate these quantities, we firstly create MCMC samples for each Λp (p = 1, . . . , P ),
denoted by {Λ(1)

p , . . . ,Λ
(N)
p } with Λ

(m)
p =

∑q0
i=1 µ

(m)
ip . Secondly, for each population p

(p = 1, . . . , P ), we estimate these offset effects as the posterior medians of each Λp, i.e.

Λ̂p = median
m=1,...,M

{
Λ(m)
p

}
(18)

Finally, offset corrected MCMC samples for each µip and φjp are generated as

µ
∗(m)
ip = µ

(m)
ip /Λ̂p φ

∗(m)
jp

= φ
(m)
jp

Λ̂p, (19)

for m = 1, . . . ,M , i = 1, . . . , q0, jp = 1, . . . , np and p = 1, . . . , P . These offset corrected
chains are returned as an output of the MCMC sampler implemented in our R library.
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1.5 A probabilistic approach to quantify evidence of changes in expression pat-
terns

A probabilistic approach is adopted, assessing changes in expression patterns (mean and over-
dispersion) through a simple and intuitive scale of evidence. Our strategy is flexible and can
be combined with a variety of decision rules. In particular, here we focus on highlighting genes
whose absolute LFC in overall expression and biological over-dispersion between the populations
exceeds minimum tolerance thresholds τ0 and ω0, respectively (τ0, ω0 ≥ 0), set a priori. For a
given probability threshold α

D
(0.5 < α

D
< 1), a gene i is identified to exhibit a change in

biological over-dispersion between populations p and p′ if

πDipp′(ω0) ≡ P(| log(δip/δip′)| > ω0|{data}) > α
D
, i = 1, . . . q0. (20)

An empirical estimate of this tail posterior probability can be easily obtained using an MCMC
sample from the posterior distribution of the δip’s. In fact, this quantity can be estimated as

π̂Dipp′(ω0) =
1

N

N∑
m=1

I
(
| log

(
δ

(m)
ip /δ

(m)
ip′

)
| > ω0

)
, (21)

where δ(m)
ip denotes the m-th posterior sample from δip and where I(A) is an indicator function

equal to 1 if the eventA is true and 0 otherwise. If ω0 → 0, πDi (ω0)→ 1 becoming uninformative
to detect changes in biological over-dispersion. As in Bochkina and Richardson (2007), in the
limiting case where τ0 = 0, we define

πDipp′(0) = 2 max
{
π̃Dipp′ , 1− π̃Dipp′

}
− 1 with π̃Dipp′ = P(log(δip/δip′) > 0|{data}). (22)

In line with (21), the latter can be estimated as

ˆ̃πDipp′ =
1

N

N∑
m=1

I
(

log
(
δ

(m)
ip /δ

(m)
ip′

)
> 0
)
. (23)

Analogous expression are used for the detection of genes whose overall expression rate changes
between the populations. In such a case, we replace log(δip/δip′), ω0 and αD by log(µip/µip′), τ0

and αM , respectively.
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