Comparison of single-cells versus pool-and-split samples
Catalina A. Vallejos, Sylvia Richardson and John C. Marioni
17 December 2015

To demonstrate the efficacy of our method, we use the control experiment described in Grun et al (2014),
where single mouse embryonic stem cells (mESCs) are compared against pool-and-split samples, consisting of
pooled RNA from thousands of mESCs split into single-cell equivalent volumes. Such a controlled setting
provides a situation where substantial changes in overall expression are not expected as, on average, the
overall expression of single cells should match the levels measured on pool-and-split samples. Additionally,
the design of pool-and-split samples removes biological variation, leading to a homogenous set of samples.
Hence, pool-and-split samples are expected to show a genuine reduction in biological cell-to-cell heterogeneity
when compared to single-cells.

In this document, we provide the R code used to perform the analysis described in the manuscript. To start
the analysis, the following data must be dowloaded and stored in data.path directory.

e Expression counts. File ‘GSE54695_data_transcript_counts.txt’ (source: http:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54695) .

e Concentrations in ERCC mix. File ‘cms_095046.txt’. The column names of this file
have been modified to be readable from R (source: https://tools.thermofisher.com/
content/sfs/manuals/cms_095046.txt)

Additionally, the following R libraries must be loaded before performing the analysis

library (BASiCS)
library(data.table) # For fast pre-processing of large datasets

Data pre-processing

Loading the data

data = fread(file.path(data.path, "GSE54695_data_transcript_counts.txt"))

Gene.Ids = data$GENENAME

Cell.Ids = names(data) [-1]

RawCounts = cbind(subset(data, select
subset(data, select

Cell.Ids[grep("SC_2i", Cell.Ids)]),
Cell.Ids[grep("RNA_2i", Cell.Ids)]))

Cell.Colour = c(rep("lightpink3",length(grep("SC_2i", Cell.Ids))),
rep("darkolivegreen3",length(grep("RNA_2i", Cell.Ids))))

The input data contains 12535 genes and 160 cells.

Transforming the data into UMI counts

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54695
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54695
https://tools.thermofisher.com/content/sfs/manuals/cms_095046.txt
https://tools.thermofisher.com/content/sfs/manuals/cms_095046.txt

Function provided by Jong Kyoung Kim (EMBL-EBI)
UMICount <- function(MoleculeCount, UMILength)
{
MoleculeCount is the mormalized count
M = 47UMILength
UMICount = Mx(l-exp(-MoleculeCount/M))
return (UMICount)
}

CountsUMI = round(UMICount (RawCounts, 4))

Quality control: filtering cells
Before running the analysis it is important to filter out samples with poor quality.

Poubfl.per.cell <- as.numeric(CountsUMI [which(Gene.Ids == "Poubf1"),])
counts.per.cell <- colSums(CountsUMI)
genes.per.cell <- apply(CountsUMI, 2, function(x) sum(x>0))
ercc.per.cell <- colSums(CountsUMI [grep("ERCC", Gene.Ids),])
par(mfrow = c(3,1))
par(cex.lab = 1.5, cex.axis = 1.5, cex.main = 2)
plot (Poubfl.per.cell[order(Poubfl.per.cell)], pch = 16,
col = Cell.Colour[order(Poubfl.per.cell)],
bty = "n", xlab = "Cells", ylab = "Poubfl counts",
main = "Poubfl counts per cell")
abline(h = 10, 1ty = 2)
abline(v = 10, 1ty = 2)
legend('topleft', c("SC_2i", "RNA_2i"), col = unique(Cell.Colour)[2:1], pch = 16, cex = 2)
plot(ercc.per.cell[order (Poubfl.per.cell)], pch = 16,
col = Cell.Colour [order(Poubfl.per.cell)],
bty = "n", xlab = "Cells", ylab = "ERCC counts",
main = "ERCC counts per cell")
abline(h = 100, 1ty = 2)
abline(v = 10, 1ty = 2)
plot(counts.per.cell[order(Poubfl.per.cell)], pch = 16,
col = Cell.Colour[order(Poubfl.per.cell)], log = "y",
bty = "n", xlab = "Cells", ylab = "Total counts",
main = "Total counts per cell")
abline(h = le4, lty = 2)
abline(v = 10, lty = 2)

Pou5f1 counts per cell

SC_2i
RNA_2i

80

Pou5f1 counts
40

Fog-----

Cells

ERCC counts per cell

ERCC counts
400 800

F-f------%cemmm oo -

0

Cells

Total counts per cell

Total counts
le+04

le+01

T S

Cells

CountsUMI_1 <- CountsUMI[,Poubfil.per.cell >= 10, with = FALSE]
Cell.Colour_1 <- Cell.Colour[Poubfl.per.cell >= 10]

Following Grun et al (2014), we discarded those cells where less than 10 transcripts of Poudf! were detected
(because poor sequencing efficiency por potential undergoing differentiation). We also notice that most
of these discarded cells also exhibit particularly low total counts (especially for the ERCCs). After this
filter, current processed data contains 12535 genes and 150 cells (74 and 76 single cells and
pool-and-split samples, respectively).

Filtering of transcripts (removing the low signal genes)
For the analysis, we only include transcripts with at least 50 counts in total across all cells.

CountsUMI_2 = CountsUMI_1[rowSums(CountsUMI_1) >= 50,]
Gene.Ids_2 = Gene.Ids[rowSums(CountsUMI_1) >= 50]

After this filter, current processed data contains 9378 (9343 and 35 intrinsic and spike-in genes,
respectively).

BASIiCS analysis

The input dataset

To use perform comparisons between two groups of cells, the current implementation of BASiCS requires the
creation of a BASiCSDV_Data object containing information regarding all cells and two separate BASiCS_Data
objects to contain separate information regarding each group. This is a temporarily solution as the library
will be updated shortly to allow a unique BASiCS_Data object containing all the required the information. In
the meantime, we also provide a BASiCSDV library, where the functions related to the differential expression
analysis (mean and over-dispersion) are implemented. A new official release of the BASiCS library, including
all data analyses, will be uploaded to github during January.

Spike-in genes information

In addition to the matrix of counts, the creation of BASiCS_Data and BASiCSDV_Data objects requires
information regarding the number of spike-in molecules that are theoretically added to each cell. These
quantities can be calculated based on the concentrations of ERCC molecules in the mix and the dilution
factors used for library preparation. These are calculated below.

SpikeInfo <- fread(file.path(data.path,"cms_095046.txt"))
SpikeInfo <- SpikeInfo[SpikeInfo$ERCC_ID %in% Gene.Ids_2[grep("ERCC", Gene.Ids_2)],]
SpikeInfo$MoleculesPerCell <- SpikeInfo$concentration_in_Mix_1 * (1e-18) * (6.022e23) * (1/2500000)

To confirm with the 3.3/ capture indicated by Grun et al
SpikeOut <- data.table("ERCC_ID" = Gene.Ids_2[grep("ERCC", Gene.Ids_2)],
"ERCC_MeanCount" = rowMeans(CountsUMI_2[grep("ERCC", Gene.Ids_2),]))
SpikeOut = merge(SpikeInfo, SpikeOut, by = "ERCC_ID")
SpikeInfoFilter = subset(SpikeInfo, select = c(ERCC_ID, MoleculesPerCell))

Overall, a 3.55 % of the added ERCC molecules where captured during the experiment.

Re-ordering of genes

Additionally, we reorder the matrix of counts to bring spike-in molecules to the bottom of the table. The
creation of the BASiCSDV_Data and BASiCS_Data objects also requires, a logical vector to indicate whether a
gene is intrinsic of a spike-in. This is stored in a Tech vector.

Input number of molecules for spike—in genes
SpikeInput = SpikeInfo$MoleculesPerCell

Creating indicator of technical genes
Tech = grepl("ERCC", Gene.Ids_2)

Ordering the data so spike-in genes are at the bottom.
CountsUMI_2 = rbind(CountsUMI_2[!Tech,], CountsUMI_2[Tech,])
Gene.Ids_2 = c(Gene.Ids_2[!'Tech], Gene.Ids_2[Tech])

Tech = c(Tech[!Tech],Tech[Tech])

Separating expression counts for each condition

A final step before creating the required BASiCS_Data objects is to separate the matrix of counts according
to the grouping of cells.

CountsUMI_SC = as.matrix(CountsUMI_2)[, grep("SC_2i",colnames(CountsUMI_2))]
CountsUMI_RNA = as.matrix(CountsUMI_2) [, grep("RNA_2i",colnames(CountsUMI_2))]
rownames (CountsUMI_SC) <- Gene.Ids_2

rownames (CountsUMI_RNA) <- Gene.Ids_2

Creating the input object

Data = newBASiCS_DV_Data(CountsTest = CountsUMI_SC,
CountsRef = CountsUMI_RNA,
Tech = Tech,
SpikeInputTest = Spikelnput,
SpikeInputRef = SpikeInput)

An object of class BASiCS_DV_Data

Dataset contains 9378 genes (9343 biological and 35 technical) and 150 cells.

- 74 cells in the test sample

- 76 cells in the reference sample

Elements (slots): CountsTest, CountsRef, Tech, SpikeInputTest and SpikeInputRef.
##

NOTICE: BASiCS_D requires a pre-filtered dataset

- You must remove poor quality cells before creating the BASiCS data object

- We recommend to pre-filter very lowly expressed transcripts before creating the object.
#it Inclusion criteria may vary for each data. For example, remove transcripts

#i# - with very low total counts across of all cells

- that are only expressed in few cells

(by default genes expressed in only 1 cell are not accepted)

- with very low total counts across the cells where the transcript is expressed

#i#

BASiCS_DV_Filter can be used for this purpose

Data.SC = newBASiCS_Data(Counts = CountsUMI_SC,
Tech = Tech,
SpikeInfo = SpikeInfoFilter)

An object of class BASiCS_Data

Dataset contains 9378 genes (9343 biological and 35 technical) and 74 cells.
Elements (slots): Counts, Tech, SpikeInput, GeneNames and BatchInfo.

The data contains 1 batch.

#i#

NOTICE: BASiCS requires a pre-filtered dataset

- You must remove poor quality cells before creating the BASiCS data object

- We recommend to pre-filter very lowly expressed transcripts before creating the object.
#it Inclusion criteria may vary for each data. For example, remove transcripts

#H# - with very low total counts across of all of the samples

H# - that are only expressed in a few cells

(by default genes expressed in only 1 cell are not accepted)

- with very low total counts across the samples where the transcript is expressed
#i#

BASiCS_Filter can be used for this purpose

Data.RNA = newBASiCS_Data(Counts = CountsUMI_RNA,
Tech = Tech,
SpikeInfo = SpikeInfoFilter)

An object of class BASiCS_Data

Dataset contains 9378 genes (9343 biological and 35 technical) and 76 cells.
Elements (slots): Counts, Tech, SpikeInput, GeneNames and BatchInfo.

The data contains 1 batch.

#i#t

NOTICE: BASiCS requires a pre-filtered dataset

- You must remove poor quality cells before creating the BASiCS data object

- We recommend to pre-filter very lowly expressed transcripts before creating the object.
Inclusion criteria may vary for each data. For example, remove transcripts

- with very low total counts across of all of the samples

- that are only expressed in a few cells

(by default genes expressed in only 1 cell are not accepted)

- with very low total counts across the samples where the transcript is expressed
#i#

BASiCS_Filter can be used for this purpose

Fitting the BASiCS model

To run the MCMC algorithm, we use the function BASiCS_MCMC. As a default, we used a2.mu = 0.5 and
a2.delta = 0.5.

N = 40000; Thin = 20; Burn = 20000
RunName.SC = pasteO("Grun_SplitFilter2i_SC_",N)
RunName.RNA = pasteO("Grun_SplitFilter2i_ RNA_",N)

MCMC_Output.SC <- BASiCS_MCMC(Data.SC, N = N, Thin = Thin, Burn = Burn,
PrintProgress = TRUE, StoreChains = TRUE,
StoreDir = chains.path, RunName = RunName.SC)

MCMC_Output.RNA <- BASiCS_MCMC(Data.RNA, N = N, Thin = Thin, Burn = Burn,
PrintProgress = TRUE, StoreChains = TRUE,
StoreDir = chains.path, RunName = RunName.RNA)

Loading pre-computed chains
This report shows the results of pre-computed chains as defined by the previous chunk of code.

ChainMuTest = as.matrix(fread(pasteO(chains.path, "chain mu_Grun_Split2i_SC_40000.txt")))
ChainMuRef = as.matrix(fread(pasteO(chains.path, "chain_mu_Grun_Split2i_RNA_40000.txt")))
ChainDeltaTest = as.matrix(fread(pasteO(chains.path, "chain_delta_Grun_Split2i_SC_40000.txt")))
ChainDeltaRef = as.matrix(fread(pasteO(chains.path, "chain_delta_Grun_Split2i_RNA_40000.txt")))
ChainPhiTest = as.matrix(fread(pasteO(chains.path, "chain_phi_Grun_Split2i_SC_40000.txt")))
ChainPhiRef = as.matrix(fread(pasteO(chains.path, "chain_phi_Grun_Split2i_RNA_40000.txt")))
ChainSTest = as.matrix(fread(pasteO(chains.path, "chain_s_Grun_Split2i_SC_40000.txt")))
ChainSRef = as.matrix(fread(pasteO(chains.path, "chain_s_Grun_Split2i_RNA_40000.txt")))
ChainNuTest = as.matrix(fread(pasteO(chains.path, "chain_nu_Grun_Split2i_SC_40000.txt")))
ChainNuRef = as.matrix(fread(pasteO(chains.path, "chain_nu_Grun_Split2i_RNA_40000.txt")))

ChainThetaTest = fread(pasteO(chains.path, "chain_theta_Grun_Split2i_SC_40000.txt"))$Batchl
ChainThetaRef = fread(pasteO(chains.path, "chain_theta_Grun_Split2i_RNA_40000.txt"))$Batchl

MCMC_Output <- newBASiCS_DV_Chain(muTest = ChainMuTest, muRef = ChainMuRef,
deltaTest = ChainDeltaTest, delta = ChainDeltaRef,
phi = cbind(ChainPhiTest, ChainPhiRef),

s = cbind(ChainSTest, ChainSRef),
nu = cbind(ChainNuTest, ChainNuRef),
thetaTest = ChainThetaTest,

thetaRef = ChainThetaRef)

An object of class BASiCS_DV_Chain

1000 MCMC samples.

Dataset contains 9343 biological genes and 150 cells (in total across both samples).

Elements (slots): muTest, muRef, deltaTest, omegaRef, phi, s, nu, thetaTest and thetaRef.

Convergence diagnostics

To assess convergence of the chain, the convergence diagnostics provided by the package coda can be used.
Additionally, a visual inspection can be performed using traceplot. As an illustration, here we display
traceplots for medians across groups of parameters (e.g. the median across all u[il]’s). It can be seen that the
mixing of the chains related to ¢;’s and v;’s mixes less well. Nonetheless, their values are still concentrated
on a very small range.

nTest = ncol(Data@CountsTest)

nRef = ncol(Data@CountsRef)

n = nTest + nRef

par(mgp = c(5,1,0)); par(mar = c(7,9,4,0.5)); par(mfrow = c(6,2))
par(cex.lab = 2, cex.axis = 1.5)

plot(apply (MCMC_QOutput@muTest, 1, median), type = "1",

ylab = expression(paste("Median of ",mul[il])), xlab = "Iteration")
plot (apply (MCMC_Output@muRef, 1, median), type = "1",
ylab = expression(paste("Median of ",mu[i2])), xlab = "Iteration")

plot (apply (MCMC_QOutput@deltaTest, 1, median), type = "1",

ylab = expression(paste("Median of ",deltal[il])), xlab
plot(apply (MCMC_Output@deltaRef, 1, median), type = "1",

ylab = expression(paste("Median of ",deltal[i2])), xlab
plot (apply (MCMC_Output@phil[,1:nTest], 1, median), type = "1"

ylab = expression(paste("Median of ",phi[j[1]])), xlab = "Iteration")
plot (apply (MCMC_Output@phil, (nTest+1):n], 1, median), type = "1",

ylab = expression(paste("Median of ",phi[j[2]])), xlab = "Iteration")
plot(apply (MCMC_Output@s[,1:nTest], 1, median), type = "1",

ylab = expression(paste("Median of ",s[j[1]])), xlab = "Iteration")
plot (apply (MCMC_Output@s[, (nTest+1):n], 1, median), type = "1",

ylab = expression(paste("Median of ",s[j[2]])), xlab = "Iteration")
plot(apply (MCMC_Output@nul[,1:nTest], 1, median), type = "1",

ylab = expression(paste("Median of ",nu[j[1]])), xlab = "Iteration")
plot (apply (MCMC_Output@nul[, (nTest+1) :n], 1, median), type = "1",

ylab = expression(paste("Median of ",nul[j[2]])), xlab = "Iteration")
plot (MCMC_Output@thetaTest, type = "1",

ylab = expression(theta[1]), xlab = "Iteration")
plot (MCMC_QOutput@thetaRef, type = "1",

ylab = expression(thetal[2]), xlab

"Tteration")

"Iteration")

-

"Tteration")

Median of v;, Median of s, Median of @, Median of &; Median of

6,

19.9

0.195 0.205 195

1.01

0.98

0.2 04 0.6

0.0590 0.0610

20 3.0

1.0

T
200

T T
400 600

T
800

T
1000

0
Iteration
B T T T T T
0 200 400 600 800 1000
Iteration
T T T T T T
0 200 400 600 800 1000
Iteration
) T T T T T T
0 200 400 600 800 1000
Iteration
L T T T T T T
0 200 400 600 800 1000
Iteration
T T T T T T
0 200 400 600 800 1000
Iteration

Median of vj, Median of sj, Median of @, Median of &, Median of i,

6,

30.6

30.0

0.108

0.100

0.985 1.000

0.2 04 0.6

0.0595 0.0615

2.0

1.0

T T T T T T

0 200 400 600 800 1000
Iteration

T T T T T T

0 200 400 600 800 1000
Iteration

T T T T T T

0 200 400 600 800 1000
Iteration

T T T T T T

0 200 400 600 800 1000
Iteration

T T T T T T

0 200 400 600 800 1000
Iteration

T T T T T T

0 200 400 600 800 1000
Iteration

Offset correction
Once the model has been fitted, possible offset effects are corrected using the following function.

0ffSetCorrection <- function(MCMC_Output)
{

median (rowSums (MCMC_QOutput@muRef) /rowSums (MCMC_Output@muTest))
}

0ffSet = OffSetCorrection(MCMC_Output)
0ffSet

[1] 1.47201

Hereafter, results are displayed based on offset corrected chains.

MCMC_Output2 <- newBASiCS_DV_Chain(muTest = ChainMuTest,
muRef = ChainMuRef / 0ffSet,
deltaTest = ChainDeltaTest,
delta = ChainDeltaRef,
phi = cbind(ChainPhiTest, ChainPhiRef * 0ffSet),
s = cbind(ChainSTest, ChainSRef),
nu = cbind(ChainNuTest, ChainNuRef),
thetaTest = ChainThetaTest,
thetaRef = ChainThetaRef)

An object of class BASiCS_DV_Chain

1000 MCMC samples.

Dataset contains 9343 biological genes and 150 cells (in total across both samples).

Elements (slots): muTest, muRef, deltaTest, omegaRef, phi, s, nu, thetaTest and thetaRef.

Differential expression analysis (mean and over-dispersion)
To visualise gene-wide behaviour of log-fold change estimates, we create the following plots.

MedianMuRef = apply(MCMC_Output2@muRef, 2, median) [!Techl]
MedianMuTest = apply(MCMC_Output2@muTest, 2, median) [!Tech]
MuBase=(MedianMuRef * nRef + MedianMuTest * nTest)/n

ChainTau = log(MCMC_Output2@muTest / MCMC_Output2@muRef)
ChainOmega = log(MCMC_QOutput2@deltaTest / MCMC_Output2@deltaRef)
MedianTau = apply(ChainTau, 2, median)

MedianOmega = apply(ChainOmega, 2, median)

par (mfrow = c(1,2))
par(mar = c(5, 6, 5, 2) + 0.1)

par(cex.axis = 1.5)

plot(MuBase, MedianTau, pch = 16, col = "grey", bty = "n", log = "x",
xlab = "Average expression rate", cex.lab = 2,
ylab = "LFC in overall expression")

abline(h = 0, 1ty = 2)

plot(MuBase, MedianOmega, pch = 16, col = '"grey", bty = "n", log = "x",
xlab = "Average expression rate", cex.lab = 2,
ylab = "LFC in over-dispersion")

abline(h = 0, 1ty = 2)

S =
(7) < - 9 L —
0 2 |
L o
O N O m
X G
g S o
g © T CIZ-’ —
S B O i
gz Cﬁ N .EE _
= O N
< | |
8 I [I I I I I I I | L_IL [I I I I I I I |
-l 5 20 100 500 5 20 100 500
Average expression rate Average expression rate

Test40 <- BASiCS_DV_TestDE(Data, MCMC_Output2, GeneNames = Gene.Ids_2[!Tech],
EpsilonM = 0.4, EpsilonD = 0.4,
EFDR_M = 0.05, EFDR_D = 0.05,
OrderVariable = "Genelndex",
GroupLabelRef = "P&S", GroupLabelTest = "SC")

557 genes with a change on the overall expression:
- Higher expression in SC group: 250

- Higher expression in P&S group: 307

Fold change tolerance = 40 %

- Evidence threshold = 0.85425

- EFDR = 5

- EFNR = 18.65 ¥,

HH*
HH+
|

2355 genes with a change on the cell-to-cell biological over dispersion:
- Higher over dispersion in SC group: 2291

- Higher over dispersion in P&S group: 64

- Fold change tolerance = 40 7

- Evidence threshold = 0.87925

10

- EFDR = 4.97 %
- EFNR = 76.28 Y
Bl —

TestO <- BASiCS_DV_TestDE(Data, MCMC_Output2, GeneNames = Gene.Ids_2[!Tech],
EpsilonM = 0, EpsilonD = O,
EFDR_ M = 0.05, EFDR_D = 0.05,
OrderVariable = "GenelIndex",
GroupLabelRef = "P&S", GroupLabelTest = "SC")

4688 genes with a change on the overall expression:
- Higher expression in SC group: 1912

- Higher expression in P&S group: 2776

- Fold change tolerance = 0 7%

- Evidence threshold = 0.79875

- EFDR = 4.97 Y

- EFNR = 43.39 Y

Bl —
#it

Hft —

2277 genes with a change on the cell-to-cell biological over dispersion:
- Higher over dispersion in SC group: 2212

- Higher over dispersion in P&S group: 65

- Fold change tolerance = 0 7%

- Evidence threshold = 0.84275

#i# - EFDR = 5.03 %

- EFNR = 41.78 7,
B
par(mfrow = c(2,2))

par(mar = c(5, 6, 4, 2) + 0.1, oma = ¢(0,0,3,0))
par(cex.axis = 1.5, cex.lab = 2)
MedianTauAux0O = ifelse(abs(TestO$Table$ExpLogFC) > 1.5,
1.5 * sign(TestO$Table$ExpLogFC), Test0$Table$ExpLogFC)
pchAux = ifelse(abs(Test0$Table$ExpLogFC) > 1.5, 4, 16)
plot (MedianTauAux0, TestO$Table$ProbDiffExp, bty = "n",
main = expression(paste(tau[0], "= 0")), cex.main = 2.5,
xlab = "LFC in overall expression",
ylab "Posterior probability",
pch = 16,
col = "grey", xlim = c(-1.5, 1.5))
points(MedianTauAux0[Test0$Table$ResultDiffExp == "SC+"],
Test0$Table$ProbDiffExp [TestO$Table$ResultDiffExp == "SC+"],
pch = 16,
col = "lightpink3")
points(MedianTauAuxO[TestO$Table$ResultDiffExp == "P&S+"],
Test0$Table$ProbDiffExp [TestO$Table$ResultDiffExp == "P&S+"],
pch = 16,
col = "darkolivegreen3")
abline(h = TestO0$DiffExpSummary$EviThreshold, 1ty = 2, lwd = 3)

plot(Test0$Table$0verDispLogFC, Test0$Table$ProbDiffOverDisp, bty = "n",

11

main = expression(paste(omegal0], "= 0")), cex.main = 2.5,
xlab = "LFC in over-dispersion",
ylab = "Posterior probability",
pch = 16, col = "grey", xlim = c(-4, 4))
points(Test0$Table$0verDispLogFC[Test0$Table$ResultDiffOverDisp == "SC+"],
Test0$Table$ProbDiffOverDisp [TestO$Table$ResultDiff0verDisp == "SC+"],
pch = 16, col = "lightpink3")
points(TestO0$Table$0verDispLogFC[TestO$Table$ResultDiff0verDisp == "P&S+"],
Test0$Table$ProbDiffOverDisp [TestO$Table$ResultDiffOverDisp == "P&S+"],
pch = 16, col = "darkolivegreen3")
abline(h = TestO0$DiffOverDispSummary$EviThreshold, 1ty = 2, lwd = 3)

MedianTauAux40 = ifelse(abs(Test40$Table$ExpLogFC) > 1.5,
1.5 * sign(Test40$Table$ExpLogFC), Test40$Table$ExpLogFC)
plot (MedianTauAux40, Test40$Table$ProbDiffExp, bty = "n",
main = expression(paste(tau[0], "= 0.4")), cex.main = 2.5,
xlab = "LFC in overall expression",
ylab = "Posterior probability",
pch = 16,
col = "grey", xlim = c(-1.5, 1.5))
points(MedianTauAux40 [Test40$Table$ResultDiffExp == "SC+"],
Test40$Table$ProbDiffExp [Test40$Table$ResultDiffExp == "SC+"],
pch = 16,
col = "lightpink3")
points(MedianTauAux40[Test40$Table$ResultDiffExp == "P&S+"],
Test40$Table$ProbDiffExp [Test40$Table$ResultDiffExp == "P&S+"],
pch = 16,
col = "darkolivegreen3")
abline(h = Test40$DiffExpSummary$EviThreshold, 1ty = 2, lwd = 3)

plot(Test40$Table$0verDispLogFC, Test40$Table$ProbDiffOverDisp, bty = "n",
main = expression(paste(omega[0], "= 0.4")), cex.main = 2.5,
xlab = "LFC in over-dispersion",
ylab = "Posterior probability",
pch = 16, col = "grey", xlim = c(-4, 4))
points(Test40$Table$0verDispLogFC[Test40$Table$ResultDiffOverDisp == "SC+"],
Test40$Table$ProbDiff0verDisp [Test40$Table$ResultDiff0verDisp == "SC+"],
pch = 16, col = "lightpink3")
points(Test40$Table$0verDispLogFC[Test40$Table$ResultDiffOverDisp == "P&S+"],
Test40$Table$ProbDiffOverDisp [Test40$Table$ResultDiffOverDisp == "P&S+"],
pch = 16, col = "darkolivegreen3")
abline(h = Test40$DiffOverDispSummary$EviThreshold, 1ty = 2, lwd = 3)

title("(a)", outer=TRUE, cex.main = 2.5)

12

(@)

T,=0

o

S -
2 o 2
g ° 2
o o o
S o o
o o
S <t S
O = A o
= o =
L L
0 N (%)
O o o
o o

o _

© [T T T T T 1

-1.5 -05 00 05 10 15
LFC in overall expression
T,=0.4

o

S -
"? o -~ T~=T=TT== === =-*< "?
8" g
o o o
© o7 o
o o
S 3 S
2 [
0 N (%)
O o o
o o

o |

© [T T T T T 1

-1.5 -05 00 05 10 15

LFC in overall expression

1.0

02 04 06

0.0

1.0

0.8

0.6

0.4

-2 0 2 4
LFC in over—dispersion

-4 -2 0 2 4
LFC in over—dispersion

ResultO = pasteO(TestO$Table$ResultDiffExp,Test0$Table$ResultDiff0verDisp)

NamesBarplot = c(names(table(Result0)))
ColourBarplot = c(rep(unique(Cell.Colour_1)[1], 3),
rep("grey", 3),

rep(unique(Cell.Colour_1) [2], 3))
par(mfrow = c(2,1))
par(mar = c(4, 4, 4, 2) + 0.1, oma = ¢(0,0,3,0))

#par(mgp = c(4, 1, 0))

par(cex.main = 2, cex.axis = 1.5, cex.lab = 1.5)

13

barplot(table(TestO$Table$ResultDiff0verDisp,
Test0$Table$ResultDiffExp) [c(3,1,2),c(3,1,2)] + 1,
col = unique(ColourBarplot), beside = TRUE, cex.names = 1.7,
ylim = c(1, 35000), xlab = "Changes in overall expression",
main = expression(paste(tau[0], "= 0, ", omegalO], "= 0")),
ylab = "Number of genes", axes = FALSE, log = "y",
names.arg = c("SC +", "No diff.", "P&S +"))
text(x = ¢(1.3, 2.5, 3.5, 5.3, 6.5, 7.5, 9.3, 10.5, 11.5),
y = 3 * as.vector(table(TestO0O$Table$ResultDiffOverDisp,
Test0$Table$ResultDiffExp) [c(3,1,2),c(3,1,2)]1),
as.vector(table(Test0$Table$ResultDiffOverDisp,
TestO$Table$ResultDiffExp) [c(3,1,2),c(3,1,2)]),
cex = 1.5, col = "black")

barplot (table(Test40$Table$ResultDiffOverDisp,
Test40$Table$ResultDiffExp) [c(3,1,2),c(3,1,2)] + 1,
col = unique(ColourBarplot), beside = TRUE, cex.names = 1.7,
c(1, 35000), xlab = "Changes in overall expression",
main = expression(paste(taul0], "= 0.4, ", omegalO], "= 0.4")),
ylab = "Number of genes", axes = FALSE, log = "y",
names.arg = c("SC +", "No diff.", "P&S +"))
text(x = ¢(1.5, 2.5, 3.5, 5.2, 6.5, 7.5, 9.3, 10.5, 11.5),
y = pmax(5, 3 * as.vector(table(Test40$Table$ResultDiff0verDisp,
Test40$Table$ResultDiffExp) [c(3,1,2),c(3,1,2)]1)),
as.vector(table(Test40$Table$ResultDiffOverDisp,
Test40$Table$ResultDiffExp) [c(3,1,2),c(3,1,2)]1),
cex = 1.5, col = "black")

ylim

title("(b)", outer=TRUE, cex.main = 2)

14

(b)

T0=0, =0
3772 1933
% 1361
% 592 851 839
(@)
IS
jo 29 32
£
= 4
SC + No diff. P&S +
Changes in overall expression
T0= 0.4, =04
6622
" 211
(O]
c
b)
= 173 112193
o 69 54
()
@)
£ 8
= 2

SC + No diff. P&S +
Changes in overall expression

15

	Data pre-processing
	Loading the data
	Transforming the data into UMI counts
	Quality control: filtering cells
	Filtering of transcripts (removing the low signal genes)

	BASiCS analysis
	The input dataset
	Spike-in genes information
	Re-ordering of genes
	Separating expression counts for each condition
	Creating the input object

	Fitting the BASiCS model
	Loading pre-computed chains
	Convergence diagnostics
	Offset correction

	Differential expression analysis (mean and over-dispersion)

