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Supplementary Note

Model and estimands
The model

Let M be the length of the genome. Given a genotype vector x ∈ RM of an individual sampled randomly
from some population distribution and a vector β ∈ RM of causal SNP effects, we model the phenotype y
with a standard linear model:

y|β, x ∼ N (xTβ, σ2
e). (1)

We assume that the genotypes are standardized in the population, i.e., that E(xm) = 0 and E(x2m) = 1
for all SNPs m. We assume the same of the phenotype: E(y) = 0 and E(y2) = 1. Because our GWAS sample
will be very large, these assumptions are for expositional convenience only.

The last ingredient of our model is the connection between β and the signed functional annotation of
interest v ∈ RM . To get this, we assume that β is sampled from a distribution satisfying

E(β|v) = µv, cov(β|v) = σ2I (2)

where µ and σ are scalars.

The estimands

The first estimand we might be interested in is µ, which would tell us the expected change in the per-
normalized-genotype effect βm of SNP m for every unit increase of vm. However, this estimand depends on
the units of v: if we multiply v by a constant c, then µ is decreased by a factor of c. We therefore introduce
a second estimand, the functional correlation rf , which is defined as the genetic correlation between y and
the 100%-heritable phenotype xT v, i.e.,

rf := corr(xTβ, xT v). (3)

Under our model,

cov(xTβ, xT v) = E(βTxxT v) (4)

= E(β)TE(xxT )v (5)

= µvTRv (6)

where R = E(xxT ) ∈ RM×M is the (signed) population LD matrix of the genotypes, and v is fixed and
known. Since

var(xT v) = E(vTxxT v) = vTRv, (7)

we obtain

rf =
cov(xTβ, xT v)√
var(xTβ)var(xT v)

= µ

√
vTRv

h2g
. (8)

where h2g = var(xTβ) is the SNP-heritability of the phenotype. Note that rf can also be derived under a
model in which v is also modeled as random and jointly distributed with β, in which case rf is equal to a
standard random-effects genetic correlation.1 The choice to model v as fixed here arises from the fact that,
since it is a complicated biological object, we wish to make as few assumptions as possible about its structure.

In addition to µ and rf , we might wish to know how much total phenotypic variance is explained by the
signed contribution of v to β. This parameter, h2v, is defined by

h2v := var(µxT v) = µ2vTRv. (9)

This is equal to the prediction r2 that we would obtain if we tried to predict y from xT v. If we scale h2v by
the total heritability of y, we obtain the proportion of heritability explained by the signed contribution of v,
i.e.,

h2v
h2g

=
µ2vTRV

h2g
= r2f . (10)
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We remark that for annotations with small support, rf and its associated quantities should generally
expected to be small in magnitude. To see this, define h2|v| to be the prediction r2 that we would obtain
if we predicted y from an optimal predictor that was constrained to be zero outside the support of v. By
construction we have h2v ≤ h2|v|, but since h2|v| is the total phenotypic variance explained by SNPs in the
support of v, this implies that r2f ≤ h2v/h2g ≤ h2|v|/h

2
g is at most the proportion of heritability explained by

the SNPs in the support of v.

Derivations and description of method
Main derivation

Now suppose that N individuals x1, . . . , xN have been sampled i.i.d. from the population with corresponding
phenotypes y1, . . . yN , and that we are given the vector of marginal correlations between each SNP and the
trait, i.e., we are given

α̂ :=
1

N

N∑
n=1

xnyn ∈ RM . (11)

It is easily shown that E(α̂|β) = Rβ (see Proposition 2 in Appendix), from which it follows that

E(α̂|v) = E(E(α̂|β, v)|v) (12)
= E(Rβ|v) (13)
= µRv. (14)

This means that naive regression of α̂ on the signed LD profile Rv of v is an unbiased estimator of µ.
However, ordinary least-squares is the best-powered when the observations have i.i.d. noise. In this regres-
sion, each SNP provides one observation (α̂m, (Rv)m), but under our model the covariance of α̂m and α̂m′

given Rv is non-zero. Therefore, if we can model this covariance structure properly, we should be able to
use generalized least-squares to reduce variance and increase power. In Theorem 1 of Appendix, we show
that indeed

cov(α̂|v) ≈ σ2R2 +
R

N
=: Ω. (15)

The default version of signed LD profile regression estimates Ω from the reference panel and the chi-squared
statistics of the GWAS in question and then performs generalized least-squares using a pseudo-inverse of Ω
to de-couple correlated errors among SNPs. It can be shown that if a) all causal SNPs are typed, b) sample
size is infinite, and c) R is invertible, this method is equivalent to estimating β via R−1α̂ and then regressing
this estimate on v to obtain µ, which is the optimal approach in that setting. Note that because we generate
P-values for hypothesis testing empirically (see below), we are guaranteed that our generalized least-squares
scheme will remain well-calibrated even if our estimate of the matrix Ω is inaccurate due to, e.g., mis-match
between the reference panel and the study population.

The point estimate arising from the regression described above is an estimate µ̂ of µ. To obtain an
estimate of rf , we plug into Equation 3, estimating h2g using the “aggregate estimator” of heritability2 given
by

ĥ2g :=
|α̂|22 − M

N

1
M5,50

∑
m
̂̀
m

(16)

where |α̂|2 is the `2-norm of α̂, ̂̀m is a reference-panel-based estimate of the LD-score `m :=
∑
m′ R2

mm′ of
SNP m, and M5,50 is the number of causal SNPs with MAF between 5% and 50%. Equation 3 also has
a vTRv term; for convenience we approximate this term by vT v; our simulations show that we do not suffer
from this approximation, and it is empirically quite accurate for our annotations (data not shown).

To estimate h2v/h2g, we use the jackknife to estimate the sampling variance τ̂2 of the statistic r̂f , and
then report r̂f 2 − τ̂2. Though this is an exactly unbiased estimate of h2v only if r̂f is normally distributed
and the jackknife provides an accurate estimate of the sampling variance of µ, our simulations show that it
is very close to unbiased in practice. Note that while we use a jackknife estimate of the variance of r̂f to
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estimate r2f , this is not how we compute P-values for null hypothesis testing; for details of null hypothesis
testing, see below.

To estimate h2v, we simply multiply our estimate of r2f = h2v/h
2
g by our estimate of h2g.

Untyped SNPs

Typically, our set of potentially causal SNPs is much larger than the set of SNPs for which we have GWAS
summary statistics. Signed LD profile works well in such scenarios: it simply uses only the entries of Rv
corresponding to typed SNPs in the regression. Because drastically different sets of typed SNPs require
estimation of Ω anew, we estimate Ω assuming that all non-MHC HapMap3 SNPs are typed, and then
restrict the summary statistics for each trait analyzed to non-MHC HapMap3 SNPs only.

Null hypothesis testing

To test the null hypothesis H0 : µ = 0 (or, equivalently, H0 : rf = 0), we split the genome into approximately
300 blocks of approximately the same size with the block boundaries constrained to fall on estimated re-
combination hotspots.3 We then define the null distribution of our statistic as the distribution arising from
independently multiplying v by an independent random sign for each block. We perform this empirical sign-
flipping many times to obtain an approximation of the null distribution and corresponding P-values. Our use
of sign-flipping ensures that any true positives found by our method are the result of genuine first-moment
effects; if in contrast we estimated standard errors using least-squares theory or a re-sampling method such
as the jackknife or bootstrap, our method might inappropriately reject the null hypothesis only because the
variance of β is higher in parts of the genome where Rv is large in magnitude. This would make our method
susceptible to confounding due to unsigned enrichments, as might arise from the co-localization of TF bind-
ing sites with enriched regulatory elements such as enhancer regions. Additionally, the fact that we flip the
signs of SNPs in each block together ensures that our null distribution preserves any potential relationship
of our annotation to the LD structure of the genome. In choosing how many blocks to use for this procedure,
we took into account that i) the fewer blocks we use the fewer assumptions we make about LD structure and
the faster we can compute P-values, and ii) the more blocks we use the higher the precision of the P-values
that we can obtain. Our choice to use 300 blocks is a compromise between these two considerations.

Controlling for covariates and the signed background model

Given a signed covariate u ∈ RM , we can perform inference on the signed effect of v conditional on u. This
is done by first regressing Ru out of α̂ and out of Rv using the generalized least-squares method outlined
above, and then proceeding as usual with the residuals of α̂ and Rv. This can be done simultaneously for
multiple covariates u.

Unless stated otherwise, all analyses in this paper are done controlling for a “signed background model”
consisting of 5 annotations u1, . . . , u5, defined by

uim = 1 {MAFm is in i-th quintile}
√

2MAFm(1−MAFm)1+αs (17)

where MAFm is the minor allele frequency of SNP m and αs is a parameter describing the MAF-dependence
of the signed effect of minor alleles on phenotype. Based on the literature on MAF-dependence of the
unsigned effects var(βm), we set αs = −0.3.4

Computational considerations
We model the LD matrix R as being block-diagonal, with the block endpoints defined by recombination
hotspots.3 This allows both more statistically efficient estimation of the true Rv as well as more efficient
computation.

For estimating Ω, we use the above block-diagonal decomposition, together with a truncated singular
value decomposition applied in each block. Specifically, we store enough singular vectors to capture 95% of
the spectrum of each LD block. This is a pre-processing step that need only be carried out once per reference
panel, and the relevant outputs of this step for the 1000G Phase 3 Europeans can be downloaded from our
website.
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Additional interpretation of results
We discuss other associations in Table 1 that are not discussed in the main text. Two of these associations
support and refine emerging theories of disease, while two are previously unknown. We begin by discussing
the two associations that build on previous knowledge. First, we detected a positive association between
genome-wide binding of ELF1 and Crohn’s disease (CD). ELF1 is a hematopoietic and immune regulator5
that, as mentioned in the main text, lies in a genome-wide significant Crohn’s disease locus in a GWAS of a
Japanese population,6,7 along with 10 other protein-coding genes within 500kb. Our top significant MSigDB
enrichment for this relationship was a set of genes differentially expressed following treatment with the drug
MRL24, which is a PPARγ agonist. PPARγ has been linked to regulation of the colonic antimicrobial
response and inflammatory bowel disease in several studies.8 Moreover, PPARγ agonists have been shown
to have clinical efficacy in treating inflammatory bowel disease,9 with some agents in current clinical use
theorized to act in part via this mechanism.9

Second, we detected a positive relationship between genome-wide binding of ETS1 and Crohn’s disease.
ETS1 is known to regulate genes involved in immunity5 and, as mentioned in the main text, the ETS1 gene
was recently found to lie in a locus associated with CD10 and IBD,11 along with 6 other protein-coding
genes within 500kb. The top significant MSigDB enrichments for this relationship point to transcriptional
programs associated with EI24 and MYC, both of which play important roles in autophagy12–14 (EI24 is also
known as “autophagy-associated transmembrane protein”). These gene-set enrichments suggest that ETS1
may play a role in mediating the well-known relationship between autophagy and CD.15

We next discuss the two associations that have not previously been observed from GWAS data. First,
we detected a positive association between genome-wide binding of FOS and HDL. In mice, liver-specific
overexpression of the FOS gene leads to increased intrahepatic cholesterol and modulation of genes in
metabolic pathways connected to cholesterol and fatty acid biosynthesis.16 FOS has also been shown to
be up-regulated when HeLa cells are grown in a sterol-depleted medium designed to activate cellular sterol
homeostatic machinery,17 and the AP-1 complex that it forms has been shown to be down-regulated by
high-cholesterol diet in model organisms.18 A different mechanism is suggested by the fact that in humans, a
mutation in the FOS gene is associated with congenital generalized lipodystrophy, a phenotype characterized
by absence of adipocytes.19 Our top MSigDB gene-set enrichment for this association was genes regulated by
NF-κB in response to TNF stimulation. This is potentially consistent with emerging relationships between
NF-κB and FOS,20 as well as between TNF and HDL.21

Second, we detected a positive association between E2F1 and Crohn’s disease. E2F1 has roles in immunity,
and E2f1-deficient mice challenged with lipopolysaccharide exhibit an attenuated inflammatory response.22
Additionally, chronic colonic inflammation is associated with release of E2F1 inhibition and activation of
E2F1 target genes.23 Finally, activity of RB, an upstream regulator of the E2F1 pathway, is a highly sensitive
and specific test for distinguishing Crohn’s disease from ulcerative colitis in some cases, with RB activity
being elevated in Crohn’s disease.24

Note: suggestively significant CTCF associations The relationships we detected between CTCF
binding and both lupus and eczema (see main text) raised the question of whether any other traits had sub-
significant signals of this sort. We investigated this question, with a primary goal of identifying specifically
auto-immune diseases with this property and a secondary goal of identifying any traits with this property.
We determined that beyond lupus and eczema no other auto-immune trait exhibited a suggestive (per-trait
FDR< 25%) association with CTCF binding. However, we note a suggestive positive association between
CTCF binding and red blood cell count (p = 2.7× 10−4; FDR= 11%).
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Supplementary Tables

Table S1: Summary information about ChIP-seq annotations used in analyses. v denotes anno-
tation, M denotes the total number of SNPs in the reference panel, |v|0 denotes the number of SNPs with
non-zero values of v, and |v|2 denotes the 2-norm of v.

Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
HAIB SKNSHRA CTCF 0.880098 18646 0.19 13.20
BROAD NHA CTCF 0.869841 27912 0.28 12.68
HAIB A549 CTCFSC5916 0.866840 21517 0.22 12.73
UW NB4 CTCF 0.866150 25419 0.25 13.23
UW HRE CTCF 0.864149 28846 0.29 13.64
HAIB A549 CTCFSC5916 0.863801 21011 0.21 13.41
UTA HUVEC CTCF 0.861944 21000 0.21 14.18
BROAD HUVEC CTCF 0.859699 29576 0.30 12.68
UW HFF CTCF 0.859124 25034 0.25 11.61
UW RPTEC CTCF 0.858547 44995 0.45 17.53
BROAD HMEC CTCF 0.858372 27488 0.27 12.58
UW HASP CTCF 0.858100 29663 0.30 14.75
UW GM12878 CTCF 0.858056 25981 0.26 13.11
UW A549 CTCF 0.857446 35097 0.35 15.54
UW HFFMYC CTCF 0.857241 38004 0.38 14.93
UTA GM12878 CTCF 0.856204 24907 0.25 15.67
UW GM06990 CTCF 0.855834 33120 0.33 14.51
UW HMF CTCF 0.854815 35825 0.36 16.13
UW HCFAA CTCF 0.854650 26214 0.26 13.36
UW GM12874 CTCF 0.854489 24822 0.25 12.73
UW HEK293 CTCF 0.854351 31140 0.31 15.48
UTA HEPG2 CTCF 0.853428 17547 0.18 13.62
UW MCF7 CTCF 0.852776 40427 0.40 17.06
UW NHEK CTCF 0.852312 31784 0.32 13.27
HAIB H1HESC CTCFSC5916 0.852040 30644 0.31 18.33
UW HVMF CTCF 0.851735 33859 0.34 14.79
UW GM12875 CTCF 0.851254 26436 0.26 13.21
UW HCT116 CTCF 0.851195 36485 0.36 15.57
UW GM12865 CTCF 0.850843 29599 0.30 14.14
HAIB HEPG2 CTCFSC5916 0.850684 29285 0.29 17.25
UW HRPE CTCF 0.850296 33503 0.34 16.27
BROAD H1HESC CTCF 0.849116 47350 0.47 20.96
UW GM12872 CTCF 0.847288 34212 0.34 15.09
SYDH H1HESC RAD21 0.846410 35780 0.36 17.12
UW BE2C CTCF 0.846211 41476 0.41 15.80
UW HPF CTCF 0.845889 29441 0.29 14.13
UW NHLF CTCF 0.845237 24971 0.25 11.64
BROAD NHDFAD CTCF 0.844702 33708 0.34 14.84
UW SAEC CTCF 0.843178 27722 0.28 13.59
BROAD HSMMT CTCF 0.843109 39253 0.39 14.10
BROAD GM12878 CTCF 0.842508 39752 0.40 14.28
BROAD NHLF CTCF 0.842394 30215 0.30 12.99
UW HELAS3 CTCF 0.842036 24028 0.24 11.95
UW GM12864 CTCF 0.841830 33480 0.33 14.86

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
UW SKNSHRA CTCF 0.841702 26551 0.27 13.96
UW HCM CTCF 0.839966 42907 0.43 15.57
UTA GLIOBLA CTCF 0.839859 37388 0.37 18.58
UTA K562 CTCF 0.838050 27610 0.28 16.98
UW HUVEC CTCF 0.837666 23780 0.24 12.51
UW K562 CTCF 0.835751 30678 0.31 14.23
UW GM12873 CTCF 0.834805 36107 0.36 15.83
UW HMEC CTCF 0.834803 36092 0.36 14.96
BROAD HEPG2 CTCF 0.834631 36924 0.37 14.72
BROAD HSMM CTCF 0.833446 34415 0.34 15.13
UW HEPG2 CTCF 0.831350 31010 0.31 15.52
UW HPAF CTCF 0.830419 40688 0.41 16.57
UW AG09309 CTCF 0.830321 31862 0.32 13.56
BROAD HELAS3 CTCF 0.828969 49347 0.49 15.31
UW BJ CTCF 0.828852 32555 0.33 13.39
BROAD NHEK CTCF 0.828230 37413 0.37 14.19
UW HEE CTCF 0.828217 33823 0.34 13.55
UW HAC CTCF 0.828210 36662 0.37 13.83
UTA HELAS3 CTCF 0.828109 25915 0.26 16.07
UW AG04450 CTCF 0.827331 32761 0.33 13.88
UTA PROGFIB CTCF 0.826811 22840 0.23 14.38
HAIB ECC1 CTCFC 0.826438 15251 0.15 8.81
BROAD DND41 CTCF 0.824320 38541 0.39 13.81
HAIB H1HESC RAD21 0.823698 47411 0.47 22.20
SYDH IMR90 CTCFB 0.820777 26982 0.27 13.99
UW AG09319 CTCF 0.820556 33669 0.34 14.46
UW HBMEC CTCF 0.819613 41152 0.41 16.62
UW WI38 CTCF 0.819609 25725 0.26 10.62
UTA H1HESC CTCF 0.818739 22472 0.22 15.80
UTA A549 CTCF 0.817553 32700 0.33 17.81
UW AG10803 CTCF 0.817006 29517 0.30 13.69
BROAD OSTEOBL CTCF 0.816996 53644 0.54 16.04
UW HCPE CTCF 0.816798 42276 0.42 16.83
SYDH GM12878 CTCFSC15914C20 0.815991 30691 0.31 15.49
UTA MCF7 CTCF 0.815467 49073 0.49 22.63
BROAD K562 CTCF 0.815351 52427 0.52 15.60
UW WERIRB1 CTCF 0.815231 30972 0.31 15.58
UTA MCF7 CTCF 0.814259 37438 0.37 18.94
UW AOAF CTCF 0.810198 25402 0.25 12.89
UW CACO2 CTCF 0.808883 28146 0.28 12.68
UW AG04449 CTCF 0.808085 24368 0.24 14.42
SYDH K562 CTCFB 0.807922 34266 0.34 15.56
HAIB HEPG2 RAD21 0.806753 31414 0.31 14.66
UW NHDFNEO CTCF 0.805912 34150 0.34 13.07
UTA FIBROBL CTCF 0.802580 24917 0.25 14.54
HAIB K562 CTCFC 0.800330 29034 0.29 14.24
SYDH HEPG2 RAD21 0.795326 24061 0.24 10.74
SYDH GM12878 RAD21 0.793772 22165 0.22 9.93
UTA GM19240 CTCF 0.787095 24254 0.24 14.44
UTA GM19238 CTCF 0.784621 28109 0.28 15.19

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
UTA NHEK CTCF 0.782123 28029 0.28 15.70
HAIB T47D CTCFSC5916 0.780735 20119 0.20 9.44
UTA GM12891 CTCF 0.776692 23165 0.23 13.77
SYDH GM12878 SMC3AB9263 0.775055 22604 0.23 9.36
HAIB GM12878 RAD21 0.773313 19232 0.19 10.90
UTA MCF7 CTCF 0.771586 32289 0.32 17.54
SYDH IMR90 RAD21 0.771096 21035 0.21 10.62
UTA GM19239 CTCF 0.770649 21921 0.22 12.29
UTA GM12892 CTCF 0.764533 27003 0.27 14.40
SYDH K562 SMC3AB9263 0.764408 17833 0.18 8.29
HAIB K562 RAD21 0.762473 17349 0.17 10.54
UW HL60 CTCF 0.760612 11834 0.12 6.43
SYDH HEPG2 MAFKAB50322 0.756003 36764 0.37 16.31
SYDH HEK293 POL2 0.750713 11423 0.11 2.57
HAIB SKNSHRA RAD21 0.748781 34221 0.34 14.81
UTA MCF7 CTCF 0.744677 33804 0.34 16.07
UTA A549 POL2 0.743474 13317 0.13 2.99
UTA MCF7 CTCF 0.737779 31703 0.32 15.80
SYDH HELAS3 RAD21 0.732822 23726 0.24 9.90
UTA GLIOBLA POL2 0.730622 12444 0.12 2.89
SYDH A549 RAD21 0.726374 15727 0.16 8.17
SYDH GM10847 POL2 0.725536 11162 0.11 2.82
SYDH K562 RAD21 0.719791 11216 0.11 5.92
UTA HUVEC POL2 0.710965 9848 0.10 2.62
SYDH GM18526 POL2 0.704244 15927 0.16 3.59
SYDH HELAS3 SMC3AB9263 0.703877 25410 0.25 9.28
SYDH MCF10AES CFOS 0.695666 52371 0.52 14.00
SYDH GM15510 POL2 0.692228 18641 0.19 3.92
SYDH GM12878 ZNF143166181AP 0.691695 16121 0.16 6.52
SYDH MCF10AES CFOS 0.689921 41778 0.42 11.91
SYDH HEPG2 SMC3AB9263 0.683574 21539 0.22 8.17
SYDH MCF10AES CFOS 0.678308 49334 0.49 12.33
SYDH MCF10AES CFOS 0.672546 37719 0.38 10.03
SYDH H1HESC ZNF143 0.665846 25229 0.25 8.50
SYDH GM18951 POL2 0.662339 23305 0.23 4.19
SYDH K562 NFYB 0.661296 9570 0.10 3.91
HAIB GM12878 GABP 0.660956 5625 0.06 2.43
HAIB ECC1 POL2 0.657365 19849 0.20 3.32
UTA MCF7 POL2 0.652882 18193 0.18 3.05
HAIB HEPG2 TAF1 0.650101 16181 0.16 2.94
SYDH K562 IRF1 0.649426 12976 0.13 3.16
SYDH K562 POL2 0.647737 16308 0.16 3.35
SYDH GM12892 POL2 0.645338 23295 0.23 4.12
SYDH HEPG2 MAFKSC477 0.643218 24770 0.25 9.07
UTA MCF7 POL2 0.642949 15229 0.15 2.94
SYDH NB4 POL2 0.641432 16158 0.16 3.31
SYDH K562 POL2 0.640277 15063 0.15 2.99
SYDH K562 POL2 0.635903 17161 0.17 3.22
SYDH K562 ZNF143 0.634772 23343 0.23 7.50
SYDH HEPG2 MAFFM8194 0.634067 25009 0.25 8.93

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
HAIB GM12878 ELF1SC631 0.631869 20946 0.21 5.37
HAIB H1HESC TAF1 0.627966 21837 0.22 3.08
HAIB HEPG2 GABP 0.627412 9290 0.09 3.07
SYDH HEPG2 CEBPB 0.625633 34970 0.35 14.15
SYDH K562 POL2 0.624054 15843 0.16 3.14
SYDH IMR90 MAFK 0.620883 25154 0.25 8.57
SYDH GM18505 POL2 0.618220 24625 0.25 3.97
UTA HELAS3 POL2 0.617348 19384 0.19 3.25
UTA PROGFIB POL2 0.617226 14761 0.15 2.91
SYDH GM19099 POL2 0.606235 22799 0.23 4.01
SYDH GM19193 POL2 0.604915 24050 0.24 3.91
SYDH K562 POL2 0.602457 15110 0.15 2.90
HAIB SKNSH TAF1 0.601160 11185 0.11 2.76
SYDH HCT116 POL2 0.598756 17455 0.17 2.72
SYDH PBDE POL2 0.596470 22492 0.22 3.29
HAIB K562 TAF1 0.594640 13400 0.13 3.11
UTA MCF7 POL2 0.587761 14677 0.15 2.73
SYDH MCF10AES POL2 0.581721 22034 0.22 3.45
BROAD K562 PLU1 0.578953 19126 0.19 2.78
SYDH IMR90 CEBPB 0.577892 44228 0.44 14.66
HAIB A549 CREB1SC240 0.576054 13155 0.13 3.07
UTA K562 POL2 0.575441 19966 0.20 3.30
HAIB GM12878 PU1 0.574256 27757 0.28 9.34
SYDH GM12878 POL2 0.573648 23803 0.24 3.93
UTA GM12878 POL2 0.572056 17552 0.18 3.00
HAIB GM12878 NRSF 0.568899 5888 0.06 3.82
BROAD K562 PHF8A301772A 0.566331 27457 0.27 2.88
SYDH RAJI POL2 0.564973 21621 0.22 3.36
SYDH HEPG2 POL2 0.563102 18212 0.18 2.71
HAIB K562 YY1 0.558414 10704 0.11 2.79
HAIB A549 POL2 0.555363 31308 0.31 3.68
HAIB A549 POL2 0.553825 29976 0.30 3.58
HAIB GM12878 YY1SC281 0.553334 26103 0.26 5.34
SYDH GM12878 POL2 0.552473 11117 0.11 2.41
HAIB GM12891 PU1 0.551608 28912 0.29 9.97
HAIB GM12878 TAF1 0.551273 12105 0.12 2.98
SYDH A549 CEBPB 0.551046 26389 0.26 9.72
SYDH HUVEC CFOS 0.550936 42775 0.43 7.57
HAIB A549 TAF1 0.550319 11038 0.11 2.08
HAIB GM12892 POL2 0.548292 23439 0.23 3.42
HAIB HELAS3 TAF1 0.547530 14406 0.14 2.81
HAIB HEPG2 POL24H8 0.547414 18782 0.19 3.01
SYDH HEPG2 JUND 0.545643 23439 0.23 5.68
SYDH HELAS3 HAE2F1 0.544870 9314 0.09 1.47
SYDH HELAS3 POL2 0.543185 29222 0.29 3.11
HAIB GM12892 TAF1 0.542027 8249 0.08 2.23
SYDH K562 MAZAB85725 0.541193 33691 0.34 6.34
SYDH MCF10AES POL2 0.541022 25900 0.26 3.53
SYDH H1HESC MAFK 0.540650 8262 0.08 2.09
HAIB A549 ETS1 0.539878 6635 0.07 2.60

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
SYDH GM12891 POL2 0.538971 24040 0.24 3.79
HAIB K562 GABP 0.535852 12143 0.12 3.59
HAIB K562 E2F6 0.535787 20429 0.20 2.89
HAIB HEPG2 YY1SC281 0.535256 17564 0.18 3.27
HAIB HCT116 POL24H8 0.534399 29439 0.29 4.18
SYDH HELAS3 ELK4 0.533836 6984 0.07 2.00
HAIB U87 NRSF 0.533645 10740 0.11 3.53
SYDH H1HESC TBP 0.533586 17933 0.18 3.13
SYDH GM12878 ELK112771 0.532557 5585 0.06 1.90
UTA H1HESC POL2 0.528904 15666 0.16 2.28
HAIB HEPG2 POL2 0.527603 26528 0.27 3.51
HAIB GM12878 PMLSC71910 0.523565 21007 0.21 3.16
HAIB HEPG2 NRSF 0.522989 11697 0.12 3.82
HAIB K562 ELF1SC631 0.521651 20676 0.21 5.35
SYDH GM12878 NFYB 0.521437 14633 0.15 3.58
HAIB GM12891 TAF1 0.520083 10825 0.11 2.70
HAIB HUVEC POL2 0.519612 24168 0.24 3.11
HAIB A549 ELF1 0.516848 8792 0.09 2.24
HAIB PFSK1 FOXP2 0.514938 15908 0.16 2.79
SYDH MCF10AES E2F4 0.514526 12559 0.13 2.58
SYDH HELAS3 NFYA 0.513807 5483 0.05 1.98
SYDH K562 HMGN3 0.513410 18241 0.18 2.26
SYDH HELAS3 NFYB 0.512540 6653 0.07 2.22
SYDH HUVEC CJUN 0.510520 20080 0.20 4.26
HAIB HUVEC POL24H8 0.509722 35149 0.35 4.72
HAIB HEPG2 ELF1SC631 0.509441 13489 0.13 3.73
SYDH K562 MAFKAB50322 0.508412 13001 0.13 3.37
HAIB GM12891 POL2 0.505543 17852 0.18 2.78
SYDH H1HESC USF2 0.503572 5202 0.05 2.27
HAIB H1HESC GABP 0.501419 5292 0.05 1.53
SYDH K562 E2F4 0.500739 7900 0.08 1.74
SYDH K562 MAFF 0.499311 17035 0.17 4.41
SYDH IMR90 POL2 0.499139 21099 0.21 2.57
HAIB H1HESC USF1 0.498243 16631 0.17 6.39
HAIB K562 MAX 0.494249 42934 0.43 5.98
SYDH HELAS3 POL2S2 0.492278 14434 0.14 2.32
HAIB H1HESC NRSF 0.491469 8454 0.08 5.74
SYDH HELAS3 MAZAB85725 0.489070 16019 0.16 2.24
HAIB HELAS3 NRSF 0.488734 6360 0.06 4.97
HAIB GM12891 YY1SC281 0.487772 11490 0.11 2.73
HAIB HEPG2 SIN3AK20 0.487522 17653 0.18 2.53
HAIB HELAS3 POL2 0.487393 28715 0.29 3.64
HAIB K562 POL2 0.486825 36854 0.37 3.37
SYDH HEPG2 MAX 0.486481 11059 0.11 1.92
HAIB GM12878 SP1 0.486260 15317 0.15 3.48
SYDH HEPG2 POL2 0.484689 20477 0.20 2.83
HAIB GM12892 POL24H8 0.483645 20500 0.21 2.59
HAIB K562 ETS1 0.483398 10444 0.10 2.37
SYDH GM12878 MAZAB85725 0.483322 22411 0.22 3.16
SYDH HELAS3 CJUN 0.478779 16492 0.16 2.98

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
SYDH K562 CFOS 0.478299 5481 0.05 2.17
SYDH HEPG2 MXI1 0.477728 21106 0.21 3.26
HAIB H1HESC POL2 0.476246 26239 0.26 2.59
SYDH K562 CEBPB 0.474134 28505 0.29 9.12
HAIB U87 POL24H8 0.473137 23582 0.24 3.29
SYDH K562 MAX 0.471849 29516 0.30 4.86
HAIB A549 GABP 0.471447 13855 0.14 3.02
SYDH HELAS3 CHD2 0.471053 19320 0.19 3.33
SYDH K562 E2F6 0.470723 16483 0.16 2.33
HAIB GM12878 EGR1 0.468941 10841 0.11 2.08
SYDH HUVEC MAX 0.466519 6425 0.06 1.93
HAIB GM12878 RUNX3SC101553 0.466113 56840 0.57 8.61
HAIB GM12878 USF1 0.465793 7272 0.07 2.57
HAIB K562 USF1 0.464692 12871 0.13 4.61
BROAD K562 RBBP5A300109A 0.463994 20083 0.20 1.84
SYDH K562 TBP 0.463143 17767 0.18 3.22
HAIB K562 SIN3AK20 0.463116 8897 0.09 1.77
SYDH K562 CMYC 0.462873 32161 0.32 5.06
SYDH A549 MAX 0.461439 9266 0.09 1.72
SYDH HELAS3 MAX 0.458337 29171 0.29 4.12
HAIB HEPG2 USF1 0.457588 12887 0.13 3.90
SYDH K562 CCNT2 0.456697 21697 0.22 2.94
SYDH GM12878 MXI1 0.456679 19923 0.20 2.77
HAIB GM12892 YY1 0.456003 12740 0.13 2.83
HAIB GM12891 POL24H8 0.455418 17929 0.18 2.50
SYDH HELAS3 CEBPB 0.450802 39105 0.39 7.92
SYDH NB4 MAX 0.449059 28193 0.28 4.72
SYDH HEPG2 TBP 0.448004 13778 0.14 2.88
HAIB HCT116 YY1SC281 0.447206 9601 0.10 2.36
UTA MCF7 CMYC 0.446932 17429 0.17 2.52
SYDH K562 CMYC 0.446684 26346 0.26 3.95
HAIB SKNSHRA YY1SC281 0.445929 13128 0.13 2.71
HAIB H1HESC YY1SC281 0.445242 15591 0.16 2.65
SYDH HELAS3 JUND 0.444612 22640 0.23 4.23
SYDH HEPG2 MAZAB85725 0.444409 12934 0.13 1.88
UTA MCF7 CMYC 0.443654 24235 0.24 3.51
HAIB A549 USF1 0.441291 7881 0.08 2.59
SYDH HEPG2 CJUN 0.440671 8890 0.09 1.91
HAIB SKNSHRA USF1SC8983 0.439829 12682 0.13 3.64
SYDH GM12878 MAX 0.439437 14531 0.15 2.21
HAIB K562 POL24H8 0.438629 19971 0.20 3.52
HAIB PFSK1 NRSF 0.435981 9928 0.10 4.63
SYDH H1HESC SIN3ANB6001263 0.433869 26283 0.26 2.93
UTA HEPG2 POL2 0.432243 21612 0.22 2.23
HAIB A549 FOSL2 0.430795 23494 0.24 3.95
HAIB SKNSH POL24H8 0.427949 22879 0.23 3.35
SYDH HUVEC POL2 0.427119 11883 0.12 1.94
HAIB K562 YY1 0.426097 19380 0.19 3.54
UCHICAGO K562 EFOS 0.425453 6855 0.07 1.91
SYDH H1HESC CHD2 0.424343 6252 0.06 1.25

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
SYDH MCF7 HAE2F1 0.423359 27514 0.28 2.20
HAIB K562 SP1 0.422803 6215 0.06 1.58
SYDH K562 JUND 0.420900 30409 0.30 5.93
SYDH HELAS3 ZNF143 0.420784 5406 0.05 2.13
HAIB A549 YY1C 0.420411 11293 0.11 2.20
SYDH GM12878 POL2S2 0.420026 12996 0.13 1.84
HAIB GM12878 POL2 0.419133 48007 0.48 3.33
HAIB PFSK1 TAF1 0.415078 6236 0.06 1.35
HAIB K562 PU1 0.411073 15386 0.15 4.70
SYDH GM12878 CHD2AB68301 0.410210 16016 0.16 2.63
SYDH NB4 CMYC 0.406744 23774 0.24 3.73
HAIB H1HESC TAF7SC101167 0.406696 10442 0.10 1.54
SYDH H1HESC CEBPB 0.405410 11800 0.12 3.73
SYDH MCF10AES STAT3 0.404351 33486 0.33 5.08
HAIB GM12878 POL24H8 0.402366 31663 0.32 2.85
HAIB SKNSH NRSF 0.401931 7233 0.07 3.71
HAIB K562 ZBTB7ASC34508 0.399912 19683 0.20 2.16
HAIB K562 EGR1 0.399163 24881 0.25 3.28
SYDH MCF10AES STAT3 0.398512 29538 0.30 4.81
SYDH K562 CHD2AB68301 0.398431 7834 0.08 2.01
HAIB SKNMC POL24H8 0.393543 21485 0.21 2.96
HAIB H1HESC POL24H8 0.391510 19419 0.19 1.99
HAIB K562 CTCFLSC98982 0.391258 5891 0.06 2.85
SYDH MCF10AES STAT3 0.388008 31591 0.32 4.98
HAIB A549 USF1 0.387810 6778 0.07 1.84
HAIB HEPG2 FOXA1SC6553 0.386906 33656 0.34 5.34
SYDH MCF10AES STAT3 0.385338 25848 0.26 4.56
HAIB SKNSH NRSF 0.385146 14169 0.14 3.45
SYDH GM12891 NFKB 0.383466 29206 0.29 4.56
HAIB H1HESC SP1 0.380258 12393 0.12 2.05
SYDH MCF10AES CMYC 0.379656 27000 0.27 4.33
SYDH HEPG2 CEBPB 0.379397 11572 0.12 4.10
HAIB K562 NRSF 0.379106 9598 0.10 4.30
SYDH GM12878 USF2 0.377835 6661 0.07 2.16
SYDH HELAS3 TBP 0.376722 17555 0.18 3.06
UTA K562 CMYC 0.372061 5833 0.06 1.68
HAIB K562 ATF3 0.371010 10360 0.10 2.78
SYDH HELAS3 MXI1AF4185 0.368398 12174 0.12 1.83
HAIB HEPG2 FOSL2 0.367104 16407 0.16 3.44
SYDH K562 CMYC 0.366773 21209 0.21 3.20
SYDH HELAS3 MAFK 0.366364 9993 0.10 1.82
SYDH HELAS3 P300SC584SC584 0.364830 18694 0.19 2.54
HAIB HEPG2 SP1 0.364172 21711 0.22 3.58
HAIB K562 PMLSC71910 0.362038 18655 0.19 2.75
HAIB K562 FOSL1SC183 0.359258 6436 0.06 2.20
HAIB GM12878 BCL11A 0.358333 12360 0.12 2.80
SYDH GM12878 SIN3ANB6001263 0.356799 13694 0.14 1.61
SYDH K562 CJUN 0.354626 5656 0.06 1.98
SYDH GM12878 TBP 0.353883 15238 0.15 2.78
HAIB HEPG2 FOXA1SC101058 0.353734 29596 0.30 4.83

Continued on next page
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Lab Cell line Experiment BASSET AUPRC |v|0 |v|0/M (%) |v|2
HAIB HEPG2 CEBPBSC150 0.348724 9795 0.10 3.67
HAIB A549 NRSF 0.348252 12999 0.13 3.65
HAIB GM12878 BATF 0.347600 18755 0.19 3.78
HAIB A549 USF1 0.347257 8140 0.08 2.22
BROAD H1HESC RBBP5A300109A 0.343881 25833 0.26 1.35
HAIB GM12892 PAX5C20 0.343844 8182 0.08 1.34
BROAD K562 POL2B 0.341811 15495 0.15 1.86
HAIB GM12878 NFICSC81335 0.341187 33737 0.34 3.76
SYDH HELAS3 RFX5200401194 0.341053 15994 0.16 2.36
HAIB GM12878 IRF4SC6059 0.340861 14517 0.15 2.83
HAIB GM12878 POU2F2 0.336826 18566 0.19 2.97
HAIB HEPG2 FOXA2SC6554 0.336085 27428 0.27 4.48
HAIB SKNSH SIN3AK20 0.336066 13855 0.14 1.95
HAIB GM12878 ATF2SC81188 0.335843 26054 0.26 3.55
SYDH HELAS3 USF2 0.329562 8429 0.08 1.85
SYDH HELAS3 E2F1 0.328842 5081 0.05 0.74
SYDH MCF10AES CMYC 0.327448 19677 0.20 2.88
HAIB HEPG2 HNF4ASC8987 0.325563 13192 0.13 3.15
SYDH K562 UBTFSAB1404509 0.325086 14930 0.15 1.59
UCHICAGO K562 EJUND 0.323401 26489 0.26 3.49
UTA GM12878 CMYC 0.322020 5627 0.06 0.63
BROAD K562 SAP3039731 0.320382 11693 0.12 1.16
SYDH K562 CMYC 0.318111 11312 0.11 2.06
HAIB H1HESC EGR1 0.317297 7071 0.07 0.68
HAIB K562 CEBPBSC150 0.311232 18052 0.18 3.71
HAIB H1HESC SIN3AK20 0.310984 7354 0.07 1.48
SYDH GM15510 NFKB 0.309530 13887 0.14 2.14
BROAD K562 HDAC1SC6298 0.308889 15009 0.15 1.08
SYDH GM19099 NFKB 0.308646 6705 0.07 1.71
HAIB GM12878 FOXM1SC502 0.307947 26561 0.27 2.91
HAIB PANC1 POL24H8 0.306956 11954 0.12 1.43
HAIB HEPG2 HNF4GSC6558 0.305644 14815 0.15 2.92
HAIB HEPG2 JUND 0.305335 14409 0.14 2.61
SYDH K562 TAL1SC12984 0.304212 18090 0.18 4.50
HAIB HEPG2 CEBPDSC636 0.303716 8698 0.09 1.82
SYDH K562 CORESTSC30189 0.303011 28293 0.28 3.98
SYDH K562 BHLHE40NB100 0.301552 19955 0.20 2.77
HAIB GM12878 EBF1SC137065 0.301285 24230 0.24 3.43
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See Excel file

Table S2: Numerical results for Figure 1. We list all P-values used for the simulations of a) no
enrichment, b) unsigned enrichment, and c) directional effects of minor alleles, with and without the 5-
MAF-bin signed background model.

See Excel file

Table S3: Numerical results for Figure 2. We list a) estimated power, with standard errors, for both
methods analyzed in Figure 2a, b) mean estimate of rf , with standard error, for all values of rf simulated,
together with quantiles of the sampling distribution of our estimator.

See Excel file

Table S4: List of traits analyzed in BLUEPRINT/NTR analysis. We list the set of traits analyzed
in the BLUEPRINT/NTR analysis, with number of typed SNPs for each trait.

See Excel file

Table S5: Details of results of BLUEPRINT/NTR analysis. We list a) the set of 409 significant
associations at per-trait FDR< 5% for the BLUEPRINT gene expression analysis, with laboratory, cell line,
and TF listed for each significant annotation, along with estimated rf , P-value, and whether the TF is known
to be activating; b) the set of 18 significant associations at per-trait FDR < 5% for the NTR gene expression
analysis; c) the side-by-side comparison of z-scores from the BLUEPRINT neutrophil expression analysis
and the NTR analysis; d) the set of 286 significant associations at per-trait FDR < 5% for the BLUEPRINT
H3K4me1 analysis; and e) the set of 359 significant associations at per-trait FDR < 5% for the BLUEPRINT
H3K27ac analysis. Note that because the QTL summary statistics analyzed here are processed in a way
that places different SNPs on different scales, the relative values of rf in these results are interpretable but
the absolute magnitudes are not.
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See Excel file

Table S6: List of GTEx traits analyzed. We list the set of GTEx traits analyzed, with number of typed
SNPs and average sample size for each trait.

See Excel file

Table S7: Results of GTEx analysis. We list a) the set of 2,330 significant associations at per-trait
FDR< 5% for the GTEx gene expression analysis, with laboratory, cell line, and TF listed for each significant
annotation, along with estimated rf and P-value; and b) the same information for the subset of results whose
significance did not decrease in the conditional analysis. Note that because the QTL summary statistics
analyzed here are processed in a way that places different SNPs on different scales, the relative values of rf
in these results are interpretable but the absolute magnitudes are not.

See Excel file

Table S8: List of diseases and complex traits analyzed. We list the set of diseases and complex traits
analyzed, with sample size, number of typed SNPs, and estimated SNP-heritability for each trait.

See Excel file

Table S9: Results of SLDP analysis of 46 diseases and complex traits. We list a) the set of
77 significant associations at per-trait FDR< 5% for the TF annotations, with laboratory, cell line, and
transcription factor listed for each significant annotation, along with estimated rf and P-value; b) the set of
4 significant associations at per-trait FDR < 5% for the alternate set of 382 annotations defined using the
same set of SNPs with non-zero effects but with the directionality of effect determined by minor allele coding
rather than predicted TF binding, for SNPs in the bottom quintile of the MAF spectrum; c) quantification
of unsigned heritability explained by signed enrichments reported in (a). Specifically: because r2f for an
annotation can never exceed the total proportion of heritability explained by the SNPs with nonzero values
of the annotation, we computed for each association the ratio of estimated r2f to the proportion of SNPs with
nonzero values of the annotation. We found that in some cases the signed signal was not only non-trivially
different from zero but also substantial enough to imply an unsigned enrichment.
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See Excel file

Table S10: Results of enrichment analysis of signed LD profile regression disease/complex
trait results. We list significant gene-set enrichments for the 77 significant signed LD profile regression
associations to diseases and complex traits. For (a) each of the top significant enrichments listed in Table 1
and (b) all of the significant enrichments at per-stratum FDR< 5%, we list: details of the annotation and
phenotype underlying the signed LD profile regression result, the full name of the enriched gene set, the
enrichment, the average signed LD profile covariance among LD blocks containing genes in the set (with
standard error), the average signed LD profile covariance among LD block not containing genes in the set
(with standard error), a p-value generated by permuting LD blocks, and a q-value calculated among the
tests conducted for each signed LD profile result within each MSigDB database.

See Excel file

Table S11: Numerical results for Figure 6. For each result in the figure, we list i) the numerical
values used to make the plot of α̂ against Rv, and ii) the association summary statistics used to make the
Manhattan plot, and iii) the numerical results underlying the two displayed gene-set enrichments.

See Excel file

Table S12: Numerical results for Figure 7. For each result in the figure, we list i) the numerical
values used to make the plot of α̂ against Rv, and ii) the association summary statistics used to make the
Manhattan plot, and iii) the numerical results underlying the two displayed gene-set enrichments.

SNP P(in causal set) Causal post. prob. Z

rs10189857 0.25 1 8.0933
rs356991 0.128176 0.512705 6.03
rs168565 0.0366951 0.14678 5.9928
rs6545816 0.154972 0.619888 5.4231
rs6545817 0.0950247 0.380099 5.3862
rs243071 0.25 1 -5.2992

Table S13: Fine mapping of EDU signal at BCL11A locus. We list the six SNPs in the 95% credible
set when running the CAVIAR method with the parameter c = 4. rs10189857 is an intronic SNP in the
BCL11A gene. (Results with c = 2 and c = 3 were similar.)

16



Cistrome ID cell type/line position on chr12 (kb) TSS body reference

63463 K562 (myeloid) 67561.047-67561.370 * Davis et al.25
63463 K562 (myeloid) 67644.456-67644.877 Davis et al.25
64734 GM12878 (LCL) 67566.529-67566.998 * Davis et al.25
64734 GM12878 (LCL) 67644.381-67644.827 Davis et al.25
64919 K562 (myeloid) 67561.765-67562.191 * Davis et al.25
64919 K562 (myeloid) 67601.114-67601.351 * Davis et al.25
64919 K562 (myeloid) 67644.587-67644.893 Davis et al.25
64735 GM12878 (LCL) 67561.943-67562.241 * Davis et al.25
64735 GM12878 (LCL) 67566.547-67567.093 * Davis et al.25
64735 GM12878 (LCL) 67644.406-67644.874 Davis et al.25
73238 B cell precursor 67562.052-67562.249 * Schjerven et al.26
57640 Nalm6 (B cell precursor) 67552.499-67552.751 Song et al.27

Table S14: IKZF1 ChIP-seq peaks within 10kb of the CTCF gene body (chr16:67562.406kb-67639.185kb)
in publicly available ChIP-seq data processed by the cistrome database. Peaks located within 2kb of the
CTCF TSS and located within the CTCF gene body are indicated. Raw data were found using the Cistrome
data browser.28

Cistrome ID cell type/line position on chr12 (kb) TSS body reference

35517 OCI-Ly1 (B lymph) 67552.542-67552.694 Hatzi et al.29
35517 OCI-Ly1 (B lymph) 67561.828-67561.989 * Hatzi et al.29
35517 OCI-Ly1 (B lymph) 67562.145-67562.414 * * Hatzi et al.29
35517 OCI-Ly1 (B lymph) 67563.131-67563.598 * * Hatzi et al.29
35517 OCI-Ly1 (B lymph) 67644.691-67644.898 Hatzi et al.29
35517 OCI-Ly1 (B lymph) 67645.077-67645.307 Hatzi et al.29
52774 T lymphocyte 67562.240-67562.531 * * Hatzi et al.29
52774 T lymphocyte 67562.729-67562.889 * * Hatzi et al.29
52303 T lymphocyte 67561.830-67561.976 * Hatzi et al.29
52303 T lymphocyte 67562.145-67562.304 * Hatzi et al.29
52303 T lymphocyte 67563.760-67563.957 * * Hatzi et al.29
35085 B lymphocyte 67554.235-67554.385 Huang et al.30
35085 B lymphocyte 67562.163-67562.501 * * Huang et al.30
35085 B lymphocyte 67563.134-67563.543 * * Huang et al.30
35085 B lymphocyte 67563.826-67564.064 * * Huang et al.30
35085 B lymphocyte 67644.751-67645.243 Huang et al.30
1958 B JURL-MK1 (myeloid) 67561.844-67562.437 * * Hurtz et al.31
1958 B JURL-MK1 (myeloid) 67562.740-67562.886 * * Hurtz et al.31
1958 B JURL-MK1 (myeloid) 67563.293-67563.487 * * Hurtz et al.31
1958 B JURL-MK1 (myeloid) 67644.723-67644.898 Hurtz et al.31
39572 B OCI-Ly1 (B lymph) 67562.242-67562.397 * Swaminathan et al.32
39572 B OCI-Ly1 (B lymph) 67563.257-67563.556 * * Swaminathan et al.32

Table S15: BCL6 ChIP-seq peaks within 10kb of the CTCF gene body in publicly available ChIP-seq data
processed by the cistrome database. Peaks located within 2kb of the CTCF TSS and located within the
CTCF gene body are indicated. Raw data were found using the Cistrome data browser.28
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See Excel file

Table S16: Results of signed LD profile regression using DeepSEA-based annotations. We list
significant results at per-trait FDR< 5% for (a) the BLUEPRINT blood molecular traits, (b) the NTR
whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and complex traits analyzed. For each
significant annotation, we list TF name, laboratory, and cell line, along with estimated rf and P-value. The
number of significant results identified by these 382 annotations was BLUEPRINT: 810; NTR: 0; GTEx:
1298; complex traits: 7.

See Excel file

Table S17: Results of signed LD profile regression using GTRD-based annotations. We list
significant results at per-trait FDR< 5% for (a) the BLUEPRINT blood molecular traits, (b) the NTR
whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and complex traits analyzed. For each
significant annotation, we list the GTRD TF name, along with estimated rf and P-value. The number of
significant results identified by these 149 annotations was BLUEPRINT: 313; NTR: 27; GTEx: 242; complex
traits: 7.

See Excel file

Table S18: Results of signed LD profile regression using HOCOMOCO motif-based annota-
tions. We downloaded the 402 core human mononucleotide TF binding motifs from the HOCOMOCO
database. For each of our ENCODE ChIP-seq tracks whose TF we could match to a HOCOMOCO TF
motif, we then created an annotation using the HOCOMOCO motif to score SNPs inside the ChIP-seq
peaks in that track. This resulted in 276 annotations. We scored each SNP allele as follows: for each allele
x of the SNP, we placed the allele in the context of the reference genome, computed a PWM score si(x)
of the resulting sequence for all possible placements i of the PWM that overlapped the SNP, scored the
allele x using t(x) =

∑
i exp si(x), and then used t(a) − t(A) to score the SNP, where a and A are the

two alleles of the SNP. We list significant results at per-trait FDR< 5% for (a) the BLUEPRINT blood
molecular traits, (b) the NTR whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and
complex traits analyzed. For each significant annotation, we list the TF name together with the laboratory
and cell line of the ENCODE ChIP-seq track used to determine which SNPs to include in the annotation,
along with estimated rf and P-value. The number of significant results identified by these 276 annotations
was BLUEPRINT: 9; NTR: 0; GTEx: 298; complex traits: 103.
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Source (# annotations) Blood QTL GTEx Diseases/complex traits Total (per annotation)

Basset (382) 1072 2330 77 3479 (9.1)
DeepSEA (382) 810 1298 7 2115 (5.5)
GTRD (184) 350 242 7 589 (3.2)
HOCOMOCO (276) 9 298 103 410 (1.5)

Table S19: For each source of annotations, we report the number of associations at per-trait FDR< 5%
obtained upon analysis of: the blood molecular QTL data, the GTEx eQTL data, the disease/complex
trait data, and all traits combined. To facilitate comparison across differently sized sets of annotations, we
additionally report the total number of results per annotation for each source of annotations.

Trait TF (num) rf p q

Years of ed. BCL11A (1) 2.4% 3.9× 10−5 1.5× 10−2

Crohn’s POL2 (16) 5.3% 4.8× 10−5 1.5× 10−2

Anorexia SP1 (1) -8.9% 1.1× 10−4 4.0× 10−2

HDL FOS (1) 4.8% 1.2× 10−4 4.6× 10−2

Eczema CTCF (12) 2.7% 1.4× 10−4 3.4× 10−2

Crohn’s ELF1 (1) 4.9% 1.6× 10−4 1.5× 10−2

Lupus CTCF (35) -5.0% 3.6× 10−4 4.4× 10−2

Crohn’s TBP (2) 5.4% 4.9× 10−4 1.5× 10−2

Crohn’s E2F1 (1) 4.3% 6.4× 10−4 2.7× 10−2

Crohn’s TAF1 (4) 4.5% 9.2× 10−4 2.5× 10−2

Crohn’s IRF1 (1) 4.7% 9.8× 10−4 1.5× 10−2

Crohn’s ETS1 (1) 6.1% 1.4× 10−3 1.5× 10−2

Lupus RAD21 (1) -3.9% 4.4× 10−3 4.1× 10−2

Table S20: Distinct TF-trait associations from analysis of diseases and complex traits using
signed LD profile regression. For each of 13 distinct TF-trait associations at per-trait FDR < 5%, we
report the associated trait, the associated TF and the total number of annotations for that TF that produced
a significant result, the estimate of the functional correlation rf , and the P-value for the most significant
annotation.
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Supplementary Figures

A B

Figure S1: Per-annotation analyses of null calibration. (a) For each annotation, we used the Simes
test33 to assess the p-value threshold at which the Benjamini-Hochberg procedure would lead to any rejections
among 1000 simulated phenotypes with no unsigned enrichment or functional correlation, and we visualized
the resulting set of 382 p-values using a q-q plot. These p-values appear uniformly distributed, as would
be expected in the scenario of proper calibration. (b) For each annotation, we plot the average χ2 statistic
for that annotation across the 1000 null simulations containing confounding due to genome-wide directional
effects of minor alleles on disease risk, against the magnitude of that annotation’s z-score for correlation with
a 100%-heritable trait whose causal SNPs are exactly the bottom fifth of the MAF spectrum with minor
alleles always being trait-increasing. (Statistical significance of the trend is difficult to assess because many
annotations are correlated, inducing a complex dependence structure among the 382 points on the plot.)
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Figure S2: Relationship of annotations to minor alleles. For each annotation, we computed the
mean and standard deviation of the predicted effect of the minor allele among all SNPs with non-zero values
of the annotation. We then performed a chi-squared test for the mean being non-zero and plotted − log10(p)
against the mean for each annotation. The green intervals show the standard deviation, in order to give a
sense for the scale on which to interpret the mean-shift. The dotted gray line indicates the threshold for
FDR significance. 373 of the 382 annotations exceeded this threshold.
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Figure S3: Power comparison of signed LD profile regression to additional methods. Power
curves comparing signed LD profile regression using generalized least-squares (GLS; i.e., weighting) to both
ordinary (i.e., unweighted) regression of the GWAS summary statistics on the signed LD profile as well as
to a naive method that simply regresses the GWAS summary statistics on the raw annotation. (Left) power
comparison with 19.5% of causal SNPs typed, (Right) power comparison with only 9.75% of causal SNPs
typed. The real phenotypes analyzed all have at most 11.9% of causal SNPs typed. SLDP regression with
default weights is the most powerful method in both regimes. Additionally, the power of the naive method
suffers when fewer SNPs are typed, while the power of SLDP regression is far less sensitive to this change.
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Figure S4: Effect of sample size and heritability on power. Power of signed LD profile regression as
a function of (left) sample size, and (right) overall trait heritability, when proportion of heritability explained
by the signed effect is held constant. Error bars indicate standard errors of power estimates.
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Figure S5: Effect of reference panel on power. Power of signed LD profile regression as a function of
effect size as measured by rf , with either a 1000G reference panel or a randomly chosen in-sample reference
panel of comparable size. Error bars indicate standard errors of power estimates.
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Figure S6: Bias in estimation of additional estimands. Assessments of the bias of signed LD profile
regression with an out-of-sample reference panel in estimating µ, h2v, rf , and h2v/h2g. For definitions of these
quantities, see Supplementary Note.
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Figure S7: Comparison across tissues of expression levels of TFs identified by signed LD profile
regression in each tissue to expression levels of TFs not identified. For each GTEx tissue in which
we found significant TF expression associations, we plot the fraction of significant TFs that are expressed
(TPM>5, following Weintraub et al.34) against the fraction of non-significant TFs that are expressed. Points
are colored in proportion to the number of significant results in each tissue.
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Figure S8: Distribution of covariance between GWAS summary statistics and signed LD pro-
file. For each of our twelve independent results, we plot, for a variety of thresholds t, the fraction of the
approximately 300 independent genomic blocks with |cov(α̂, Rv)| > t in which the covariance is positive ver-
sus negative. There is an excess of blocks in which sign of the covariance matches the genome-wide direction
of effect. (We note that, as this figure illustrates, our results do not imply that the sign of the covariance
matches the genome-wide direction of effect in all blocks.)
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Figure S9: Comparison of signed LD profile regression using Basset to results using DeepSEA.
For each phenotype and each of the 382 ENCODE ChIP-seq tracks used in our main analyses, we plot the
SLDP z-score of the DeepSEA-derived annotation from that track on that phenotype against SLDP z-scores
of the Basset-derived annotation from that same track on that same phenotype. We display separate plots
for the four sets of phenotypes analyzed in the paper; red dots indicate significant results from our main
analyses using the Basset-derived annotations; correlations between the two sets of z-scores are indicated on
each plot.
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Figure S10: Comparison of Deepsea prediction accuracy to Basset prediction accuracy. For
each of the 691 ENCODE TF ChIP-seq tracks for which we had AUPRC information using both Basset
and DeepSEA, we plot the DeepSEA AUPRC for that track against the Basset AUPRC for that track. The
dashed line indicates y = x, and the solid lines indicate our QC threshold of AUPRC> 0.3.
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Figure S11: Basset and Deepsea converge on biological signal. For each of the 382 ENCODE ChIP-
seq tracks used in our main analyses, we plot (i) the correlation across SNPs between the Basset-derived
annotation for that track and the DeepSEA-derived annotation for that track, against (ii) the correlation
across phenotypes between the z-scores of the Basset-derived annotation for that track and the z-scores of the
DeepSEA-derived annotation for that track. The dashed line indicates y = x, and the percentages indicate
the fraction of annotations in which either (i)>(ii) or (i)<(ii). The fact that the vast majority of annotations
are more correlated when the correlation is measured across phenotypes indicates that the signal that is
shared between Basset and DeepSEA is strongly reflected in GWAS data.
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Figure S12: Comparison of signed LD profile regression using Basset to results using motifs
from HOCOMOCO database. For each phenotype and each of the 276 ENCODE ChIP-seq tracks used
in our main analyses that had a corresponding motif in HOCOMOCO, we plot the SLDP z-score of the
HOCOMOCO-derived annotation from that track on that phenotype against SLDP z-scores of the Basset-
derived annotation from that same track on that same phenotype. We display separate plots for the four
sets of phenotypes analyzed in the paper; red dots indicate significant results from our main analyses using
the Basset-derived annotations; correlations between the two sets of z-scores are indicated on each plot.
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Figure S13: Basset and HOCOMOCO motifs converge weakly on biological signal. For each of
the 276 ENCODE ChIP-seq tracks used in our main analyses that had a corresponding motif in HOCO-
MOCO, we plot (i) the correlation across SNPs between the Basset-derived annotation for that track and
the HOCOMOCO-derived annotation for that track, against (ii) the correlation across phenotypes between
the z-scores of the Basset-derived annotation for that track and the z-scores of the HOCOMOCO-derived
annotation for that track. The dashed line indicates y = x, and the percentages indicate the fraction of
annotations in which either (i)>(ii) or (i)<(ii). The majority of annotations are more correlated when the
correlation is measured across phenotypes, indicating that the signal that is shared between Basset and
HOCOMOCO is reflected in GWAS data. However, the trend is considerably weaker than it is when Basset
and DeepSEA are compared (see Figure S11).

28



Appendix: the distribution of GWAS summary statistics
We define the vector α̂ of marginal correlations between SNPs and trait and derive its first two moments
under a variety of relevant models, building up to the signed LD profile regression model.

Definitions
LetM be the number of SNPs in the genome. Assume we have sampled N genotype vectors x1, . . . , xN i.i.d.
from some population distribution, and that the phenotypes y1, . . . , yN of those individuals satisfy

yn = xTnβ + εn (18)

where β ∈ RM is the vector of true causal SNP effects on trait, and εn
iid∼ N (0, σ2

e) are independent of the xn.
We assume throughout this section that genotypes are standardized in the population, i.e., E(xnm) = 0
and E(x2nm) = 1 for all n,m. We assume the same of the phenotype: E(yn) = 0 and E(y2n) = 1 for all n.
These assumptions are for expositional convenience.

Let X ∈ RN×M be the matrix whose n-th row is xTn , and let Y ∈ RN be the vector whose n-th entry
is yn. The vector

α̂ =
XTY

N
, (19)

which has as its m-th entry the in-sample marginal correlation between SNP m and the trait, is the vector
of GWAS summary statistics.

Having defined α̂, we now proceed to derive its first two moments, initially for fixed X and fixed β, and
then for fixed β only. After doing so, we will impose the distributional assumption on β used in signed
LD profile regression and, by marginalizing out β according to this distribution, we will obtain the result
required for this paper.

Derivation for fixed X and fixed β

When both X and β are fixed, the following proposition35 gives the moments of α̂.

Proposition 1. Under the model defined above, α̂ satisfies

α̂|X,β ∼ N

(
R̂β, σ2

e

R̂

N

)
(20)

where R̂ = XTX/N is the sample covariance matrix of the genotypes.

Proof. Let ε ∈ RN be the vector whose n-th entry is εn. When X and β are both fixed, it is easy to see that

α̂ =
1

N
XTY (21)

=
1

N
XT (XTβ + ε) (22)

= R̂β +
1

N
XT ε. (23)

The result follows from normality of ε, together with E(ε) = 0, and var(XT ε/N) = σ2
eX

TX/N2 = σ2
eR̂/N .

Derivation for random X and fixed β

When working with summary statistics, it is desirable to explicitly model the relationship between the
unobserved individuals and the LD reference panel by assuming the individuals were drawn from a population
distribution whose LD properties we are given by the reference panel. The following result states the moments
of α̂ when we do so. We prove the result assuming Gaussian genotypes, but it can be shown to be robust to
this assumption provided there is a lower bound on minor allele frequency relative to sample size.
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Proposition 2. Under the model defined above and assuming Gaussian genotypes, α̂ satisfies

α̂|β ∼
[
Rβ,

1

N

(
R+RββTR

)]
(24)

where R = cov(xn) ∈ RM×M is the population covariance matrix of the genotypes, and the notation [, ] is
used to specify the mean and covariance of the distribution without specifying any higher moments.

Proof. Application of the law of total expectation to the result from Proposition 1 readily gives

E(α̂|β) = E (E(α̂|X,β)|β) (25)

= E(R̂β|β) (26)
= Rβ. (27)

Application of the law of total covariance yields

cov(α̂|β) = E (cov(α̂|X,β)|β) + cov (E(α̂|X,β)|β) (28)

σ2
e

R̂

N
+ cov(R̂β|β). (29)

It is left then only to analyze cov(R̂β|β) = E(R̂ββT R̂)−RββTR. To do so, we note that

cov(R̂β|β)mm′ =
(
E(R̂ββT R̂)−RββTR

)
mm′

(30)

=
∑
i,j

(
E
(
R̂miβiβjR̂jm′

)
−RmiβiβjRjm′

)
(31)

=
∑
i,j

βiβj

(
E
(
R̂miR̂m′j

)
−RmiRm′j

)
(32)

=
1

N

∑
i,j

βiβj (Rmm′Rij +RmjRm′i) (33)

=
1

N
Rmm′

∑
i,j

βiβjRij +
1

N

∑
i,j

βiβjRmjRm′i (34)

=
1

N
Rmm′βTRβ +

1

N

∑
i,j

βiβjRmjRm′i (35)

where Equation 33 follows from the fact that for Gaussian genotypes, Isselis’ theorem implies that

E(R̂miR̂m′j) = RmiRm′j +
1

N
(Rmm′Rij +RmjRm′i). (36)

The result of this argument can be summarized across all pairs of SNPs m,m′ by

cov(R̂β|β) =
1

N

(
(βTRβ)R+RββTR

)
, (37)

whereupon noticing that βTRβ + σ2
e = var(yn) = 1 completes the proof.

Corollary 1. Under the model defined above, α̂ approximately satisfies

α̂|β ∼
[
Rβ,

R

N

]
(38)

where R = cov(xn) ∈ RM×M is the population covariance matrix of the genotypes.

Proof. For a polygenic trait, βm ≈ O(1/M), and so βmβm′ ≈ O(1/M2). This means that we have that
(RββTR)mm′ = O(k2/M2) where k is the number of SNPs in non-zero LD with both SNP m and SNP m′.
Since k �M , k2/M2 is very small compared to Rmm′ .

We remark that the above argument does indeed require a polygenic trait. In the other extreme of a
trait determined entirely by the value of one SNP, RββTR can take on large values around the single causal
SNP.
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Derivation for random X and random β

We now assume the full signed LD profile regression model, i.e., we fix some signed annotation v ∈ RM , and
let β ∼ [µv, σ2]. Under this model, we have the following result.

Theorem 1. If β ∼ [µv, σ2] for some v ∈ RM and σ2 > 0, then α̂ approximately satisfies

α̂|v ∼
[
µRv, σ2R2 +

R

N

]
(39)

where R = cov(xn) ∈ RM×M is the population covariance matrix of the genotypes.

Proof. The law of total expectation applied to the result of Corollary 1 yields E(α̂|v) = µRv as desired. The
law of total covariance yields

cov(α̂|v) ≈ E (cov(α̂|β)|v) + cov (E(α̂|β)|v) (40)

=
R

N
+ cov(Rβ|v) (41)

=
R

N
+Rcov(β|v)R (42)

=
R

N
+ σ2R2 (43)

as desired.
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