Supplementary Information for: Detecting genome-wide directional effects of transcription factor binding on polygenic disease risk

April 29, 2018

Contents

Supplementary Note 2
Model and estimands 2
Derivations and description of method 3
Computational considerations 4
Additional interpretation of results 5
Supplementary Tables 6
Supplementary Figures 20
Appendix: the distribution of GWAS summary statistics 29

Supplementary Note

Model and estimands

The model

Let M be the length of the genome. Given a genotype vector $x \in \mathbb{R}^{M}$ of an individual sampled randomly from some population distribution and a vector $\beta \in \mathbb{R}^{M}$ of causal SNP effects, we model the phenotype y with a standard linear model:

$$
\begin{equation*}
y \mid \beta, x \sim \mathcal{N}\left(x^{T} \beta, \sigma_{e}^{2}\right) \tag{1}
\end{equation*}
$$

We assume that the genotypes are standardized in the population, i.e., that $E\left(x_{m}\right)=0$ and $E\left(x_{m}^{2}\right)=1$ for all SNPs m. We assume the same of the phenotype: $E(y)=0$ and $E\left(y^{2}\right)=1$. Because our GWAS sample will be very large, these assumptions are for expositional convenience only.

The last ingredient of our model is the connection between β and the signed functional annotation of interest $v \in \mathbb{R}^{M}$. To get this, we assume that β is sampled from a distribution satisfying

$$
\begin{equation*}
E(\beta \mid v)=\mu v, \quad \operatorname{cov}(\beta \mid v)=\sigma^{2} I \tag{2}
\end{equation*}
$$

where μ and σ are scalars.

The estimands

The first estimand we might be interested in is μ, which would tell us the expected change in the per-normalized-genotype effect β_{m} of SNP m for every unit increase of v_{m}. However, this estimand depends on the units of v : if we multiply v by a constant c, then μ is decreased by a factor of c. We therefore introduce a second estimand, the functional correlation r_{f}, which is defined as the genetic correlation between y and the 100%-heritable phenotype $x^{T} v$, i.e.,

$$
\begin{equation*}
r_{f}:=\operatorname{corr}\left(x^{T} \beta, x^{T} v\right) \tag{3}
\end{equation*}
$$

Under our model,

$$
\begin{align*}
\operatorname{cov}\left(x^{T} \beta, x^{T} v\right) & =E\left(\beta^{T} x x^{T} v\right) \tag{4}\\
& =E(\beta)^{T} E\left(x x^{T}\right) v \tag{5}\\
& =\mu v^{T} R v \tag{6}
\end{align*}
$$

where $R=E\left(x x^{T}\right) \in \mathbb{R}^{M \times M}$ is the (signed) population LD matrix of the genotypes, and v is fixed and known. Since

$$
\begin{equation*}
\operatorname{var}\left(x^{T} v\right)=E\left(v^{T} x x^{T} v\right)=v^{T} R v \tag{7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
r_{f}=\frac{\operatorname{cov}\left(x^{T} \beta, x^{T} v\right)}{\sqrt{\operatorname{var}\left(x^{T} \beta\right) \operatorname{var}\left(x^{T} v\right)}}=\mu \sqrt{\frac{v^{T} R v}{h_{g}^{2}}} . \tag{8}
\end{equation*}
$$

where $h_{g}^{2}=\operatorname{var}\left(x^{T} \beta\right)$ is the SNP-heritability of the phenotype. Note that r_{f} can also be derived under a model in which v is also modeled as random and jointly distributed with β, in which case r_{f} is equal to a standard random-effects genetic correlation. ${ }^{1}$ The choice to model v as fixed here arises from the fact that, since it is a complicated biological object, we wish to make as few assumptions as possible about its structure.

In addition to μ and r_{f}, we might wish to know how much total phenotypic variance is explained by the signed contribution of v to β. This parameter, h_{v}^{2}, is defined by

$$
\begin{equation*}
h_{v}^{2}:=\operatorname{var}\left(\mu x^{T} v\right)=\mu^{2} v^{T} R v \tag{9}
\end{equation*}
$$

This is equal to the prediction r^{2} that we would obtain if we tried to predict y from $x^{T} v$. If we scale h_{v}^{2} by the total heritability of y, we obtain the proportion of heritability explained by the signed contribution of v, i.e.,

$$
\begin{equation*}
\frac{h_{v}^{2}}{h_{g}^{2}}=\frac{\mu^{2} v^{T} R V}{h_{g}^{2}}=r_{f}^{2} \tag{10}
\end{equation*}
$$

We remark that for annotations with small support, r_{f} and its associated quantities should generally expected to be small in magnitude. To see this, define $h_{|v|}^{2}$ to be the prediction r^{2} that we would obtain if we predicted y from an optimal predictor that was constrained to be zero outside the support of v. By construction we have $h_{v}^{2} \leq h_{|v|}^{2}$, but since $h_{|v|}^{2}$ is the total phenotypic variance explained by SNPs in the support of v, this implies that $r_{f}^{2} \leq h_{v}^{2} / h_{g}^{2} \leq h_{|v|}^{2} / h_{g}^{2}$ is at most the proportion of heritability explained by the SNPs in the support of v.

Derivations and description of method

Main derivation

Now suppose that N individuals x_{1}, \ldots, x_{N} have been sampled i.i.d. from the population with corresponding phenotypes $y_{1}, \ldots y_{N}$, and that we are given the vector of marginal correlations between each SNP and the trait, i.e., we are given

$$
\begin{equation*}
\hat{\alpha}:=\frac{1}{N} \sum_{n=1}^{N} x_{n} y_{n} \in \mathbb{R}^{M} . \tag{11}
\end{equation*}
$$

It is easily shown that $E(\hat{\alpha} \mid \beta)=R \beta$ (see Proposition 2 in Appendix), from which it follows that

$$
\begin{align*}
E(\hat{\alpha} \mid v) & =E(E(\hat{\alpha} \mid \beta, v) \mid v) \tag{12}\\
& =E(R \beta \mid v) \tag{13}\\
& =\mu R v \tag{14}
\end{align*}
$$

This means that naive regression of $\hat{\alpha}$ on the signed $L D$ profile $R v$ of v is an unbiased estimator of μ. However, ordinary least-squares is the best-powered when the observations have i.i.d. noise. In this regression, each SNP provides one observation $\left(\hat{\alpha}_{m},(R v)_{m}\right)$, but under our model the covariance of $\hat{\alpha}_{m}$ and $\hat{\alpha}_{m^{\prime}}$ given $R v$ is non-zero. Therefore, if we can model this covariance structure properly, we should be able to use generalized least-squares to reduce variance and increase power. In Theorem 1 of Appendix, we show that indeed

$$
\begin{equation*}
\operatorname{cov}(\hat{\alpha} \mid v) \approx \sigma^{2} R^{2}+\frac{R}{N}=: \Omega \tag{15}
\end{equation*}
$$

The default version of signed LD profile regression estimates Ω from the reference panel and the chi-squared statistics of the GWAS in question and then performs generalized least-squares using a pseudo-inverse of Ω to de-couple correlated errors among SNPs. It can be shown that if a) all causal SNPs are typed, b) sample size is infinite, and c) R is invertible, this method is equivalent to estimating β via $R^{-1} \hat{\alpha}$ and then regressing this estimate on v to obtain μ, which is the optimal approach in that setting. Note that because we generate P-values for hypothesis testing empirically (see below), we are guaranteed that our generalized least-squares scheme will remain well-calibrated even if our estimate of the matrix Ω is inaccurate due to, e.g., mis-match between the reference panel and the study population.

The point estimate arising from the regression described above is an estimate $\hat{\mu}$ of μ. To obtain an estimate of r_{f}, we plug into Equation 3, estimating h_{g}^{2} using the "aggregate estimator" of heritability ${ }^{2}$ given by

$$
\begin{equation*}
\hat{h_{g}^{2}}:=\frac{|\hat{\alpha}|_{2}^{2}-\frac{M}{N}}{\frac{1}{M_{5,50}} \sum_{m} \widehat{\ell_{m}}} \tag{16}
\end{equation*}
$$

where $|\hat{\alpha}|_{2}$ is the ℓ_{2}-norm of $\hat{\alpha}, \widehat{\ell_{m}}$ is a reference-panel-based estimate of the LD-score $\ell_{m}:=\sum_{m^{\prime}} R_{m m^{\prime}}^{2}$ of SNP m, and $M_{5,50}$ is the number of causal SNPs with MAF between 5% and 50%. Equation 3 also has a $v^{T} R v$ term; for convenience we approximate this term by $v^{T} v$; our simulations show that we do not suffer from this approximation, and it is empirically quite accurate for our annotations (data not shown).

To estimate h_{v}^{2} / h_{g}^{2}, we use the jackknife to estimate the sampling variance $\widehat{\tau^{2}}$ of the statistic $\widehat{r_{f}}$, and then report ${\widehat{r_{f}}}^{2}-\widehat{\tau^{2}}$. Though this is an exactly unbiased estimate of h_{v}^{2} only if $\widehat{r_{f}}$ is normally distributed and the jackknife provides an accurate estimate of the sampling variance of μ, our simulations show that it is very close to unbiased in practice. Note that while we use a jackknife estimate of the variance of $\widehat{r_{f}}$ to
estimate r_{f}^{2}, this is not how we compute P-values for null hypothesis testing; for details of null hypothesis testing, see below.

To estimate h_{v}^{2}, we simply multiply our estimate of $r_{f}^{2}=h_{v}^{2} / h_{g}^{2}$ by our estimate of h_{g}^{2}.

Untyped SNPs

Typically, our set of potentially causal SNPs is much larger than the set of SNPs for which we have GWAS summary statistics. Signed LD profile works well in such scenarios: it simply uses only the entries of $R v$ corresponding to typed SNPs in the regression. Because drastically different sets of typed SNPs require estimation of Ω anew, we estimate Ω assuming that all non-MHC HapMap3 SNPs are typed, and then restrict the summary statistics for each trait analyzed to non-MHC HapMap3 SNPs only.

Null hypothesis testing

To test the null hypothesis $H_{0}: \mu=0$ (or, equivalently, $H_{0}: r_{f}=0$), we split the genome into approximately 300 blocks of approximately the same size with the block boundaries constrained to fall on estimated recombination hotspots. ${ }^{3}$ We then define the null distribution of our statistic as the distribution arising from independently multiplying v by an independent random sign for each block. We perform this empirical signflipping many times to obtain an approximation of the null distribution and corresponding P-values. Our use of sign-flipping ensures that any true positives found by our method are the result of genuine first-moment effects; if in contrast we estimated standard errors using least-squares theory or a re-sampling method such as the jackknife or bootstrap, our method might inappropriately reject the null hypothesis only because the variance of β is higher in parts of the genome where $R v$ is large in magnitude. This would make our method susceptible to confounding due to unsigned enrichments, as might arise from the co-localization of TF binding sites with enriched regulatory elements such as enhancer regions. Additionally, the fact that we flip the signs of SNPs in each block together ensures that our null distribution preserves any potential relationship of our annotation to the LD structure of the genome. In choosing how many blocks to use for this procedure, we took into account that i) the fewer blocks we use the fewer assumptions we make about LD structure and the faster we can compute P-values, and ii) the more blocks we use the higher the precision of the P -values that we can obtain. Our choice to use 300 blocks is a compromise between these two considerations.

Controlling for covariates and the signed background model

Given a signed covariate $u \in \mathbb{R}^{M}$, we can perform inference on the signed effect of v conditional on u. This is done by first regressing $R u$ out of $\hat{\alpha}$ and out of $R v$ using the generalized least-squares method outlined above, and then proceeding as usual with the residuals of $\hat{\alpha}$ and $R v$. This can be done simultaneously for multiple covariates u.

Unless stated otherwise, all analyses in this paper are done controlling for a "signed background model" consisting of 5 annotations u^{1}, \ldots, u^{5}, defined by

$$
\begin{equation*}
u_{m}^{i}=\mathbf{1}\left\{\mathrm{MAF}_{m} \text { is in } i \text {-th quintile }\right\} \sqrt{2 \mathrm{MAF}_{m}\left(1-\mathrm{MAF}_{m}\right)^{1+\alpha_{s}}} \tag{17}
\end{equation*}
$$

where MAF_{m} is the minor allele frequency of SNP m and α_{s} is a parameter describing the MAF-dependence of the signed effect of minor alleles on phenotype. Based on the literature on MAF-dependence of the unsigned effects $\operatorname{var}\left(\beta_{m}\right)$, we set $\alpha_{s}=-0.3 .{ }^{4}$

Computational considerations

We model the LD matrix R as being block-diagonal, with the block endpoints defined by recombination hotspots. ${ }^{3}$ This allows both more statistically efficient estimation of the true $R v$ as well as more efficient computation.

For estimating Ω, we use the above block-diagonal decomposition, together with a truncated singular value decomposition applied in each block. Specifically, we store enough singular vectors to capture 95% of the spectrum of each LD block. This is a pre-processing step that need only be carried out once per reference panel, and the relevant outputs of this step for the 1000G Phase 3 Europeans can be downloaded from our website.

Additional interpretation of results

We discuss other associations in Table 1 that are not discussed in the main text. Two of these associations support and refine emerging theories of disease, while two are previously unknown. We begin by discussing the two associations that build on previous knowledge. First, we detected a positive association between genome-wide binding of ELF1 and Crohn's disease (CD). ELF1 is a hematopoietic and immune regulator ${ }^{5}$ that, as mentioned in the main text, lies in a genome-wide significant Crohn's disease locus in a GWAS of a Japanese population, ${ }^{6,7}$ along with 10 other protein-coding genes within 500 kb . Our top significant MSigDB enrichment for this relationship was a set of genes differentially expressed following treatment with the drug MRL24, which is a PPAR γ agonist. PPAR γ has been linked to regulation of the colonic antimicrobial response and inflammatory bowel disease in several studies. ${ }^{8}$ Moreover, PPAR γ agonists have been shown to have clinical efficacy in treating inflammatory bowel disease, ${ }^{9}$ with some agents in current clinical use theorized to act in part via this mechanism. ${ }^{9}$

Second, we detected a positive relationship between genome-wide binding of ETS1 and Crohn's disease. ETS1 is known to regulate genes involved in immunity ${ }^{5}$ and, as mentioned in the main text, the ETS1 gene was recently found to lie in a locus associated with CD^{10} and IBD, ${ }^{11}$ along with 6 other protein-coding genes within 500 kb . The top significant MSigDB enrichments for this relationship point to transcriptional programs associated with EI24 and MYC, both of which play important roles in autophagy ${ }^{12-14}$ (EI24 is also known as "autophagy-associated transmembrane protein"). These gene-set enrichments suggest that ETS1 may play a role in mediating the well-known relationship between autophagy and CD. ${ }^{15}$

We next discuss the two associations that have not previously been observed from GWAS data. First, we detected a positive association between genome-wide binding of FOS and HDL. In mice, liver-specific overexpression of the FOS gene leads to increased intrahepatic cholesterol and modulation of genes in metabolic pathways connected to cholesterol and fatty acid biosynthesis. ${ }^{16}$ FOS has also been shown to be up-regulated when HeLa cells are grown in a sterol-depleted medium designed to activate cellular sterol homeostatic machinery, ${ }^{17}$ and the AP-1 complex that it forms has been shown to be down-regulated by high-cholesterol diet in model organisms. ${ }^{18}$ A different mechanism is suggested by the fact that in humans, a mutation in the FOS gene is associated with congenital generalized lipodystrophy, a phenotype characterized by absence of adipocytes. ${ }^{19}$ Our top MSigDB gene-set enrichment for this association was genes regulated by NF- $\kappa \mathrm{B}$ in response to TNF stimulation. This is potentially consistent with emerging relationships between NF- $\kappa \mathrm{B}$ and FOS, ${ }^{20}$ as well as between TNF and HDL. ${ }^{21}$

Second, we detected a positive association between E2F1 and Crohn's disease. E2F1 has roles in immunity, and E2f1-deficient mice challenged with lipopolysaccharide exhibit an attenuated inflammatory response. ${ }^{22}$ Additionally, chronic colonic inflammation is associated with release of E2F1 inhibition and activation of E2F1 target genes. ${ }^{23}$ Finally, activity of RB , an upstream regulator of the E2F1 pathway, is a highly sensitive and specific test for distinguishing Crohn's disease from ulcerative colitis in some cases, with RB activity being elevated in Crohn's disease. ${ }^{24}$

Note: suggestively significant CTCF associations The relationships we detected between CTCF binding and both lupus and eczema (see main text) raised the question of whether any other traits had subsignificant signals of this sort. We investigated this question, with a primary goal of identifying specifically auto-immune diseases with this property and a secondary goal of identifying any traits with this property. We determined that beyond lupus and eczema no other auto-immune trait exhibited a suggestive (per-trait $\mathrm{FDR}<25 \%$) association with CTCF binding. However, we note a suggestive positive association between CTCF binding and red blood cell count ($p=2.7 \times 10^{-4} ; \mathrm{FDR}=11 \%$).

Supplementary Tables

Table S1: Summary information about ChIP-seq annotations used in analyses. v denotes annotation, M denotes the total number of SNPs in the reference panel, $|v|_{0}$ denotes the number of SNPs with non-zero values of v, and $|v|_{2}$ denotes the 2-norm of v.

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / M(\%)$	$\|v\|_{2}$
HAIB	SKNSHRA	CTCF	0.880098	18646	0.19	13.20
BROAD	NHA	CTCF	0.869841	27912	0.28	12.68
HAIB	A549	CTCFSC5916	0.866840	21517	0.22	12.73
UW	NB4	CTCF	0.866150	25419	0.25	13.23
UW	HRE	CTCF	0.864149	28846	0.29	13.64
HAIB	A549	CTCFSC5916	0.863801	21011	0.21	13.41
UTA	HUVEC	CTCF	0.861944	21000	0.21	14.18
BROAD	HUVEC	CTCF	0.859699	29576	0.30	12.68
UW	HFF	CTCF	0.859124	25034	0.25	11.61
UW	RPTEC	CTCF	0.858547	44995	0.45	17.53
BROAD	HMEC	CTCF	0.858372	27488	0.27	12.58
UW	HASP	CTCF	0.858100	29663	0.30	14.75
UW	GM12878	CTCF	0.858056	25981	0.26	13.11
UW	A549	CTCF	0.857446	35097	0.35	15.54
UW	HFFMYC	CTCF	0.857241	38004	0.38	14.93
UTA	GM12878	CTCF	0.856204	24907	0.25	15.67
UW	GM06990	CTCF	0.855834	33120	0.33	14.51
UW	HMF	CTCF	0.854815	35825	0.36	16.13
UW	HCFAA	CTCF	0.854650	26214	0.26	13.36
UW	GM12874	CTCF	0.854489	24822	0.25	12.73
UW	HEK293	CTCF	0.854351	31140	0.31	15.48
UTA	HEPG2	CTCF	0.853428	17547	0.18	13.62
UW	MCF7	CTCF	0.852776	40427	0.40	17.06
UW	NHEK	CTCF	0.852312	31784	0.32	13.27
HAIB	H1HESC	CTCFSC5916	0.852040	30644	0.31	18.33
UW	HVMF	CTCF	0.851735	33859	0.34	14.79
UW	GM12875	CTCF	0.851254	26436	0.26	13.21
UW	HCT116	CTCF	0.851195	36485	0.36	15.57
UW	GM12865	CTCF	0.850843	29599	0.30	14.14
HAIB	HEPG2	CTCFSC5916	0.850684	29285	0.29	17.25
UW	HRPE	CTCF	0.850296	33503	0.34	16.27
BROAD	H1HESC	CTCF	0.849116	47350	0.47	20.96
UW	GM12872	CTCF	0.847288	34212	0.34	15.09
SYDH	H1HESC	RAD21	0.846410	35780	0.36	17.12
UW	BE2C	CTCF	0.846211	41476	0.41	15.80
UW	HPF	CTCF	0.845889	29441	0.29	14.13
UW	NHLF	CTCF	0.845237	24971	0.25	11.64
BROAD	NHDFAD	CTCF	0.844702	33708	0.34	14.84
UW	SAEC	CTCF	0.843178	27722	0.28	13.59
BROAD	HSMMT	CTCF	0.843109	39253	0.39	14.10
BROAD	GM12878	CTCF	0.842508	39752	0.40	14.28
BROAD	NHLF	CTCF	0.842394	30215	0.30	12.99
UW	HELAS3	CTCF	0.842036	24028	0.24	11.95
UW	GM12864	CTCF	0.841830	33480	0.33	14.86

Continued on next page

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / M(\%)$	$\|v\|_{2}$
UW	SKNSHRA	CTCF	0.841702	26551	0.27	13.96
UW	HCM	CTCF	0.839966	42907	0.43	15.57
UTA	GLIOBLA	CTCF	0.839859	37388	0.37	18.58
UTA	K562	CTCF	0.838050	27610	0.28	16.98
UW	HUVEC	CTCF	0.837666	23780	0.24	12.51
UW	K562	CTCF	0.835751	30678	0.31	14.23
UW	GM12873	CTCF	0.834805	36107	0.36	15.83
UW	HMEC	CTCF	0.834803	36092	0.36	14.96
BROAD	HEPG2	CTCF	0.834631	36924	0.37	14.72
BROAD	HSMM	CTCF	0.833446	34415	0.34	15.13
UW	HEPG2	CTCF	0.831350	31010	0.31	15.52
UW	HPAF	CTCF	0.830419	40688	0.41	16.57
UW	AG09309	CTCF	0.830321	31862	0.32	13.56
BROAD	HELAS3	CTCF	0.828969	49347	0.49	15.31
UW	BJ	CTCF	0.828852	32555	0.33	13.39
BROAD	NHEK	CTCF	0.828230	37413	0.37	14.19
UW	HEE	CTCF	0.828217	33823	0.34	13.55
UW	HAC	CTCF	0.828210	36662	0.37	13.83
UTA	HELAS3	CTCF	0.828109	25915	0.26	16.07
UW	AG04450	CTCF	0.827331	32761	0.33	13.88
UTA	PROGFIB	CTCF	0.826811	22840	0.23	14.38
HAIB	ECC1	CTCFC	0.826438	15251	0.15	8.81
BROAD	DND41	CTCF	0.824320	38541	0.39	13.81
HAIB	H1HESC	RAD21	0.823698	47411	0.47	22.20
SYDH	IMR90	CTCFB	0.820777	26982	0.27	13.99
UW	AG09319	CTCF	0.820556	33669	0.34	14.46
UW	HBMEC	CTCF	0.819613	41152	0.41	16.62
UW	WI38	CTCF	0.819609	25725	0.26	10.62
UTA	H1HESC	CTCF	0.818739	22472	0.22	15.80
UTA	A549	CTCF	0.817553	32700	0.33	17.81
UW	AG10803	CTCF	0.817006	29517	0.30	13.69
BROAD	OSTEOBL	CTCF	0.816996	53644	0.54	16.04
UW	HCPE	CTCF	0.816798	42276	0.42	16.83
SYDH	GM12878	CTCFSC15914C20	0.815991	30691	0.31	15.49
UTA	MCF7	CTCF	0.815467	49073	0.49	22.63
BROAD	K562	CTCF	0.815351	52427	0.52	15.60
UW	WERIRB1	CTCF	0.815231	30972	0.31	15.58
UTA	MCF7	CTCF	0.814259	37438	0.37	18.94
UW	AOAF	CTCF	0.810198	25402	0.25	12.89
UW	CACO2	CTCF	0.808883	28146	0.28	12.68
UW	AG04449	CTCF	0.808085	24368	0.24	14.42
SYDH	K562	CTCFB	0.807922	34266	0.34	15.56
HAIB	HEPG2	RAD21	0.806753	31414	0.31	14.66
UW	NHDFNEO	CTCF	0.805912	34150	0.34	13.07
UTA	FIBROBL	CTCF	0.802580	24917	0.25	14.54
HAIB	K562	CTCFC	0.800330	29034	0.29	14.24
SYDH	HEPG2	RAD21	0.795326	24061	0.24	10.74
SYDH	GM12878	RAD21	0.793772	22165	0.22	9.93
UTA	GM19240	CTCF	0.787095	24254	0.24	14.44
UTA	GM19238	CTCF	0.784621	28109	0.28	15.19

Continued on next page

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / M(\%)$	$\|v\|_{2}$
UTA	NHEK	CTCF	0.782123	28029	0.28	15.70
HAIB	T47D	CTCFSC5916	0.780735	20119	0.20	9.44
UTA	GM12891	CTCF	0.776692	23165	0.23	13.77
SYDH	GM12878	SMC3AB9263	0.775055	22604	0.23	9.36
HAIB	GM12878	RAD21	0.773313	19232	0.19	10.90
UTA	MCF7	CTCF	0.771586	32289	0.32	17.54
SYDH	IMR90	RAD21	0.771096	21035	0.21	10.62
UTA	GM19239	CTCF	0.770649	21921	0.22	12.29
UTA	GM12892	CTCF	0.764533	27003	0.27	14.40
SYDH	K562	SMC3AB9263	0.764408	17833	0.18	8.29
HAIB	K562	RAD21	0.762473	17349	0.17	10.54
UW	HL60	CTCF	0.760612	11834	0.12	6.43
SYDH	HEPG2	MAFKAB50322	0.756003	36764	0.37	16.31
SYDH	HEK293	POL2	0.750713	11423	0.11	2.57
HAIB	SKNSHRA	RAD21	0.748781	34221	0.34	14.81
UTA	MCF7	CTCF	0.744677	33804	0.34	16.07
UTA	A549	POL2	0.743474	13317	0.13	2.99
UTA	MCF7	CTCF	0.737779	31703	0.32	15.80
SYDH	HELAS3	RAD21	0.732822	23726	0.24	9.90
UTA	GLIOBLA	POL2	0.730622	12444	0.12	2.89
SYDH	A549	RAD21	0.726374	15727	0.16	8.17
SYDH	GM10847	POL2	0.725536	11162	0.11	2.82
SYDH	K562	RAD21	0.719791	11216	0.11	5.92
UTA	HUVEC	POL2	0.710965	9848	0.10	2.62
SYDH	GM18526	POL2	0.704244	15927	0.16	3.59
SYDH	HELAS3	SMC3AB9263	0.703877	25410	0.25	9.28
SYDH	MCF10AES	CFOS	0.695666	52371	0.52	14.00
SYDH	GM15510	POL2	0.692228	18641	0.19	3.92
SYDH	GM12878	ZNF143166181AP	0.691695	16121	0.16	6.52
SYDH	MCF10AES	CFOS	0.689921	41778	0.42	11.91
SYDH	HEPG2	SMC3AB9263	0.683574	21539	0.22	8.17
SYDH	MCF10AES	CFOS	0.678308	49334	0.49	12.33
SYDH	MCF10AES	CFOS	0.672546	37719	0.38	10.03
SYDH	H1HESC	ZNF143	0.665846	25229	0.25	8.50
SYDH	GM18951	POL2	0.662339	23305	0.23	4.19
SYDH	K562	NFYB	0.661296	9570	0.10	3.91
HAIB	GM12878	GABP	0.660956	5625	0.06	2.43
HAIB	ECC1	POL2	0.657365	19849	0.20	3.32
UTA	MCF7	POL2	0.652882	18193	0.18	3.05
HAIB	HEPG2	TAF1	0.650101	16181	0.16	2.94
SYDH	K562	IRF1	0.649426	12976	0.13	3.16
SYDH	K562	POL2	0.647737	16308	0.16	3.35
SYDH	GM12892	POL2	0.645338	23295	0.23	4.12
SYDH	HEPG2	MAFKSC477	0.643218	24770	0.25	9.07
UTA	MCF7	POL2	0.642949	15229	0.15	2.94
SYDH	NB4	POL2	0.641432	16158	0.16	3.31
SYDH	K562	POL2	0.640277	15063	0.15	2.99
SYDH	K562	POL2	0.635903	17161	0.17	3.22
SYDH	K562	ZNF143	0.634772	23343	0.23	7.50
SYDH	HEPG2	MAFFM8194	0.634067	25009	0.25	8.93

Continued on next page

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / M(\%)$	$\|v\|_{2}$
HAIB	GM12878	ELF1SC631	0.631869	20946	0.21	5.37
HAIB	H1HESC	TAF1	0.627966	21837	0.22	3.08
HAIB	HEPG2	GABP	0.627412	9290	0.09	3.07
SYDH	HEPG2	CEBPB	0.625633	34970	0.35	14.15
SYDH	K562	POL2	0.624054	15843	0.16	3.14
SYDH	IMR90	MAFK	0.620883	25154	0.25	8.57
SYDH	GM18505	POL2	0.618220	24625	0.25	3.97
UTA	HELAS3	POL2	0.617348	19384	0.19	3.25
UTA	PROGFIB	POL2	0.617226	14761	0.15	2.91
SYDH	GM19099	POL2	0.606235	22799	0.23	4.01
SYDH	GM19193	POL2	0.604915	24050	0.24	3.91
SYDH	K562	POL2	0.602457	15110	0.15	2.90
HAIB	SKNSH	TAF1	0.601160	11185	0.11	2.76
SYDH	HCT116	POL2	0.598756	17455	0.17	2.72
SYDH	PBDE	POL2	0.596470	22492	0.22	3.29
HAIB	K562	TAF1	0.594640	13400	0.13	3.11
UTA	MCF7	POL2	0.587761	14677	0.15	2.73
SYDH	MCF10AES	POL2	0.581721	22034	0.22	3.45
BROAD	K562	PLU1	0.578953	19126	0.19	2.78
SYDH	IMR90	CEBPB	0.577892	44228	0.44	14.66
HAIB	A549	CREB1SC240	0.576054	13155	0.13	3.07
UTA	K562	POL2	0.575441	19966	0.20	3.30
HAIB	GM12878	PU1	0.574256	27757	0.28	9.34
SYDH	GM12878	POL2	0.573648	23803	0.24	3.93
UTA	GM12878	POL2	0.572056	17552	0.18	3.00
HAIB	GM12878	NRSF	0.568899	5888	0.06	3.82
BROAD	K562	PHF8A301772A	0.566331	27457	0.27	2.88
SYDH	RAJI	POL2	0.564973	21621	0.22	3.36
SYDH	HEPG2	POL2	0.563102	18212	0.18	2.71
HAIB	K562	YY1	0.558414	10704	0.11	2.79
HAIB	A549	POL2	0.555363	31308	0.31	3.68
HAIB	A549	POL2	0.553825	29976	0.30	3.58
HAIB	GM12878	YY1SC281	0.553334	26103	0.26	5.34
SYDH	GM12878	POL2	0.552473	11117	0.11	2.41
HAIB	GM12891	PU1	0.551608	28912	0.29	9.97
HAIB	GM12878	TAF1	0.551273	12105	0.12	2.98
SYDH	A549	CEBPB	0.551046	26389	0.26	9.72
SYDH	HUVEC	CFOS	0.550936	42775	0.43	7.57
HAIB	A549	TAF1	0.550319	11038	0.11	2.08
HAIB	GM12892	POL2	0.548292	23439	0.23	3.42
HAIB	HELAS3	TAF1	0.547530	14406	0.14	2.81
HAIB	HEPG2	POL24H8	0.547414	18782	0.19	3.01
SYDH	HEPG2	JUND	0.545643	23439	0.23	5.68
SYDH	HELAS3	HAE2F1	0.544870	9314	0.09	1.47
SYDH	HELAS3	POL2	0.543185	29222	0.29	3.11
HAIB	GM12892	TAF1	0.542027	8249	0.08	2.23
SYDH	K562	MAZAB85725	0.541193	33691	0.34	6.34
SYDH	MCF10AES	POL2	0.541022	25900	0.26	3.53
SYDH	H1HESC	MAFK	0.540650	8262	0.08	2.09
HAIB	A549	ETS1	0.539878	6635	0.07	2.60

Continued on next page

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / M(\%)$	$\|v\|_{2}$
SYDH	GM12891	POL2	0.538971	24040	0.24	3.79
HAIB	K562	GABP	0.535852	12143	0.12	3.59
HAIB	K562	E2F6	0.535787	20429	0.20	2.89
HAIB	HEPG2	YY1SC281	0.535256	17564	0.18	3.27
HAIB	HCT116	POL24H8	0.534399	29439	0.29	4.18
SYDH	HELAS3	ELK4	0.533836	6984	0.07	2.00
HAIB	U87	NRSF	0.533645	10740	0.11	3.53
SYDH	H1HESC	TBP	0.533586	17933	0.18	3.13
SYDH	GM12878	ELK112771	0.532557	5585	0.06	1.90
UTA	H1HESC	POL2	0.528904	15666	0.16	2.28
HAIB	HEPG2	POL2	0.527603	26528	0.27	3.51
HAIB	GM12878	PMLSC71910	0.523565	21007	0.21	3.16
HAIB	HEPG2	NRSF	0.522989	11697	0.12	3.82
HAIB	K562	ELF1SC631	0.521651	20676	0.21	5.35
SYDH	GM12878	NFYB	0.521437	14633	0.15	3.58
HAIB	GM12891	TAF1	0.520083	10825	0.11	2.70
HAIB	HUVEC	POL2	0.519612	24168	0.24	3.11
HAIB	A549	ELF1	0.516848	8792	0.09	2.24
HAIB	PFSK1	FOXP2	0.514938	15908	0.16	2.79
SYDH	MCF10AES	E2F4	0.514526	12559	0.13	2.58
SYDH	HELAS3	NFYA	0.513807	5483	0.05	1.98
SYDH	K562	HMGN3	0.513410	18241	0.18	2.26
SYDH	HELAS3	NFYB	0.512540	6653	0.07	2.22
SYDH	HUVEC	CJUN	0.510520	20080	0.20	4.26
HAIB	HUVEC	POL24H8	0.509722	35149	0.35	4.72
HAIB	HEPG2	ELF1SC631	0.509441	13489	0.13	3.73
SYDH	K562	MAFKAB50322	0.508412	13001	0.13	3.37
HAIB	GM12891	POL2	0.505543	17852	0.18	2.78
SYDH	H1HESC	USF2	0.503572	5202	0.05	2.27
HAIB	H1HESC	GABP	0.501419	5292	0.05	1.53
SYDH	K562	E2F4	0.500739	7900	0.08	1.74
SYDH	K562	MAFF	0.499311	17035	0.17	4.41
SYDH	IMR90	POL2	0.499139	21099	0.21	2.57
HAIB	H1HESC	USF1	0.498243	16631	0.17	6.39
HAIB	K562	MAX	0.494249	42934	0.43	5.98
SYDH	HELAS3	POL2S2	0.492278	14434	0.14	2.32
HAIB	H1HESC	NRSF	0.491469	8454	0.08	5.74
SYDH	HELAS3	MAZAB85725	0.489070	16019	0.16	2.24
HAIB	HELAS3	NRSF	0.488734	6360	0.06	4.97
HAIB	GM12891	YY1SC281	0.487772	11490	0.11	2.73
HAIB	HEPG2	SIN3AK20	0.487522	17653	0.18	2.53
HAIB	HELAS3	POL2	0.487393	28715	0.29	3.64
HAIB	K562	POL2	0.486825	36854	0.37	3.37
SYDH	HEPG2	MAX	0.486481	11059	0.11	1.92
HAIB	GM12878	SP1	0.486260	15317	0.15	3.48
SYDH	HEPG2	POL2	0.484689	20477	0.20	2.83
HAIB	GM12892	POL24H8	0.483645	20500	0.21	2.59
HAIB	K562	ETS1	0.483398	10444	0.10	2.37
SYDH	GM12878	MAZAB85725	0.483322	22411	0.22	3.16
SYDH	HELAS3	CJUN	0.478779	16492	0.16	2.98

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / M(\%)$	$\|v\|_{2}$
SYDH	K562	CFOS	0.478299	5481	0.05	2.17
SYDH	HEPG2	MXI1	0.477728	21106	0.21	3.26
HAIB	H1HESC	POL2	0.476246	26239	0.26	2.59
SYDH	K562	CEBPB	0.474134	28505	0.29	9.12
HAIB	U87	POL24H8	0.473137	23582	0.24	3.29
SYDH	K562	MAX	0.471849	29516	0.30	4.86
HAIB	A549	GABP	0.471447	13855	0.14	3.02
SYDH	HELAS3	CHD2	0.471053	19320	0.19	3.33
SYDH	K562	E2F6	0.470723	16483	0.16	2.33
HAIB	GM12878	EGR1	0.468941	10841	0.11	2.08
SYDH	HUVEC	MAX	0.466519	6425	0.06	1.93
HAIB	GM12878	RUNX3SC101553	0.466113	56840	0.57	8.61
HAIB	GM12878	USF1	0.465793	7272	0.07	2.57
HAIB	K562	USF1	0.464692	12871	0.13	4.61
BROAD	K562	RBBP5A300109A	0.463994	20083	0.20	1.84
SYDH	K562	TBP	0.463143	17767	0.18	3.22
HAIB	K562	SIN3AK20	0.463116	8897	0.09	1.77
SYDH	K562	CMYC	0.462873	32161	0.32	5.06
SYDH	A549	MAX	0.461439	9266	0.09	1.72
SYDH	HELAS3	MAX	0.458337	29171	0.29	4.12
HAIB	HEPG2	USF1	0.457588	12887	0.13	3.90
SYDH	K562	CCNT2	0.456697	21697	0.22	2.94
SYDH	GM12878	MXI1	0.456679	19923	0.20	2.77
HAIB	GM12892	YY1	0.456003	12740	0.13	2.83
HAIB	GM12891	POL24H8	0.455418	17929	0.18	2.50
SYDH	HELAS3	CEBPB	0.450802	39105	0.39	7.92
SYDH	NB4	MAX	0.449059	28193	0.28	4.72
SYDH	HEPG2	TBP	0.448004	13778	0.14	2.88
HAIB	HCT116	YY1SC281	0.447206	9601	0.10	2.36
UTA	MCF7	CMYC	0.446932	17429	0.17	2.52
SYDH	K562	CMYC	0.446684	26346	0.26	3.95
HAIB	SKNSHRA	YY1SC281	0.445929	13128	0.13	2.71
HAIB	H1HESC	YY1SC281	0.445242	15591	0.16	2.65
SYDH	HELAS3	JUND	0.444612	22640	0.23	4.23
SYDH	HEPG2	MAZAB85725	0.444409	12934	0.13	1.88
UTA	MCF7	CMYC	0.443654	24235	0.24	3.51
HAIB	A549	USF1	0.441291	7881	0.08	2.59
SYDH	HEPG2	CJUN	0.440671	8890	0.09	1.91
HAIB	SKNSHRA	USF1SC8983	0.439829	12682	0.13	3.64
SYDH	GM12878	MAX	0.439437	14531	0.15	2.21
HAIB	K562	POL24H8	0.438629	19971	0.20	3.52
HAIB	PFSK1	NRSF	0.435981	9928	0.10	4.63
SYDH	H1HESC	SIN3ANB6001263	0.433869	26283	0.26	2.93
UTA	HEPG2	POL2	0.432243	21612	0.22	2.23
HAIB	A549	FOSL2	0.430795	23494	0.24	3.95
HAIB	SKNSH	POL24H8	0.427949	22879	0.23	3.35
SYDH	HUVEC	POL2	0.427119	11883	0.12	1.94
HAIB	K562	YY1	0.426097	19380	0.19	3.54
UCHICAGO	K562	EFOS	0.425453	6855	0.07	1.91
SYDH	H1HESC	CHD2	0.424343	6252	0.06	1.25

Continued on next page

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / \mathrm{M}(\%)$	$\|v\|_{2}$
SYDH	MCF7	HAE2F1	0.423359	27514	0.28	2.20
HAIB	K562	SP1	0.422803	6215	0.06	1.58
SYDH	K562	JUND	0.420900	30409	0.30	5.93
SYDH	HELAS3	ZNF143	0.420784	5406	0.05	2.13
HAIB	A549	YY1C	0.420411	11293	0.11	2.20
SYDH	GM12878	POL2S2	0.420026	12996	0.13	1.84
HAIB	GM12878	POL2	0.419133	48007	0.48	3.33
HAIB	PFSK1	TAF1	0.415078	6236	0.06	1.35
HAIB	K562	PU1	0.411073	15386	0.15	4.70
SYDH	GM12878	CHD2AB68301	0.410210	16016	0.16	2.63
SYDH	NB4	CMYC	0.406744	23774	0.24	3.73
HAIB	H1HESC	TAF7SC101167	0.406696	10442	0.10	1.54
SYDH	H1HESC	CEBPB	0.405410	11800	0.12	3.73
SYDH	MCF10AES	STAT3	0.404351	33486	0.33	5.08
HAIB	GM12878	POL24H8	0.402366	31663	0.32	2.85
HAIB	SKNSH	NRSF	0.401931	7233	0.07	3.71
HAIB	K562	ZBTB7ASC34508	0.399912	19683	0.20	2.16
HAIB	K562	EGR1	0.399163	24881	0.25	3.28
SYDH	MCF10AES	STAT3	0.398512	29538	0.30	4.81
SYDH	K562	CHD2AB68301	0.398431	7834	0.08	2.01
HAIB	SKNMC	POL24H8	0.393543	21485	0.21	2.96
HAIB	H1HESC	POL24H8	0.391510	19419	0.19	1.99
HAIB	K562	CTCFLSC98982	0.391258	5891	0.06	2.85
SYDH	MCF10AES	STAT3	0.388008	31591	0.32	4.98
HAIB	A549	USF1	0.387810	6778	0.07	1.84
HAIB	HEPG2	FOXA1SC6553	0.386906	33656	0.34	5.34
SYDH	MCF10AES	STAT3	0.385338	25848	0.26	4.56
HAIB	SKNSH	NRSF	0.385146	14169	0.14	3.45
SYDH	GM12891	NFKB	0.383466	29206	0.29	4.56
HAIB	H1HESC	SP1	0.380258	12393	0.12	2.05
SYDH	MCF10AES	CMYC	0.379656	27000	0.27	4.33
SYDH	HEPG2	CEBPB	0.379397	11572	0.12	4.10
HAIB	K562	NRSF	0.379106	9598	0.10	4.30
SYDH	GM12878	USF2	0.377835	6661	0.07	2.16
SYDH	HELAS3	TBP	0.376722	17555	0.18	3.06
UTA	K562	CMYC	0.372061	5833	0.06	1.68
HAIB	K562	ATF3	0.371010	10360	0.10	2.78
SYDH	HELAS3	MXI1AF4185	0.368398	12174	0.12	1.83
HAIB	HEPG2	FOSL2	0.367104	16407	0.16	3.44
SYDH	K562	CMYC	0.366773	21209	0.21	3.20
SYDH	HELAS3	MAFK	0.366364	9993	0.10	1.82
SYDH	HELAS3	P300SC584SC584	0.364830	18694	0.19	2.54
HAIB	HEPG2	SP1	0.364172	21711	0.22	3.58
HAIB	K562	PMLSC71910	0.362038	18655	0.19	2.75
HAIB	K562	FOSL1SC183	0.359258	6436	0.06	2.20
HAIB	GM12878	BCL11A	0.358333	12360	0.12	2.80
SYDH	GM12878	SIN3ANB6001263	0.356799	13694	0.14	1.61
SYDH	K562	CJUN	0.354626	5656	0.06	1.98
SYDH	GM12878	TBP	0.353883	15238	0.15	2.78
HAIB	HEPG2	FOXA1SC101058	0.353734	29596	0.30	4.83

Lab	Cell line	Experiment	BASSET AUPRC	$\|v\|_{0}$	$\|v\|_{0} / M(\%)$	$\|v\|_{2}$
HAIB	HEPG2	CEBPBSC150	0.348724	9795	0.10	3.67
HAIB	A549	NRSF	0.348252	12999	0.13	3.65
HAIB	GM12878	BATF	0.347600	18755	0.19	3.78
HAIB	A549	USF1	0.347257	8140	0.08	2.22
BROAD	H1HESC	RBBP5A300109A	0.343881	25833	0.26	1.35
HAIB	GM12892	PAX5C20	0.343844	8182	0.08	1.34
BROAD	K562	POL2B	0.341811	15495	0.15	1.86
HAIB	GM12878	NFICSC81335	0.341187	33737	0.34	3.76
SYDH	HELAS3	RFX5200401194	0.341053	15994	0.16	2.36
HAIB	GM12878	IRF4SC6059	0.340861	14517	0.15	2.83
HAIB	GM12878	POU2F2	0.336826	18566	0.19	2.97
HAIB	HEPG2	FOXA2SC6554	0.336085	27428	0.27	4.48
HAIB	SKNSH	SIN3AK20	0.336066	13855	0.14	1.95
HAIB	GM12878	ATF2SC81188	0.335843	26054	0.26	3.55
SYDH	HELAS3	USF2	0.329562	8429	0.08	1.85
SYDH	HELAS3	E2F1	0.328842	5081	0.05	0.74
SYDH	MCF10AES	CMYC	0.327448	19677	0.20	2.88
HAIB	HEPG2	HNF4ASC8987	0.325563	13192	0.13	3.15
SYDH	K562	UBTFSAB1404509	0.325086	14930	0.15	1.59
UCHICAGO	K562	EJUND	0.323401	26489	0.26	3.49
UTA	GM12878	CMYC	0.322020	5627	0.06	0.63
BROAD	K562	SAP3039731	0.320382	11693	0.12	1.16
SYDH	K562	CMYC	0.318111	11312	0.11	2.06
HAIB	H1HESC	EGR1	0.317297	7071	0.07	0.68
HAIB	K562	CEBPBSC150	0.311232	18052	0.18	3.71
HAIB	H1HESC	SIN3AK20	0.310984	7354	0.07	1.48
SYDH	GM15510	NFKB	0.309530	13887	0.14	2.14
BROAD	K562	HDAC1SC6298	0.308889	15009	0.15	1.08
SYDH	GM19099	NFKB	0.308646	6705	0.07	1.71
HAIB	GM12878	FOXM1SC502	0.307947	26561	0.27	2.91
HAIB	PANC1	POL24H8	0.306956	11954	0.12	1.43
HAIB	HEPG2	HNF4GSC6558	0.305644	14815	0.15	2.92
HAIB	HEPG2	JUND	0.305335	14409	0.14	2.61
SYDH	K562	TAL1SC12984	0.304212	18090	0.18	4.50
HAIB	HEPG2	CEBPDSC636	0.303716	8698	0.09	1.82
SYDH	K562	CORESTSC30189	0.303011	28293	0.28	3.98
SYDH	K562	BHLHE40NB100	0.301552	19955	0.20	2.77
HAIB	GM12878	EBF1SC137065	0.301285	24230	0.24	3.43

See Excel file

Table S2: Numerical results for Figure 1. We list all P-values used for the simulations of a) no enrichment, b) unsigned enrichment, and c) directional effects of minor alleles, with and without the 5-MAF-bin signed background model.

See Excel file

Table S3: Numerical results for Figure 2. We list a) estimated power, with standard errors, for both methods analyzed in Figure 2a, b) mean estimate of r_{f}, with standard error, for all values of r_{f} simulated, together with quantiles of the sampling distribution of our estimator.

See Excel file

Table S4: List of traits analyzed in BLUEPRINT/NTR analysis. We list the set of traits analyzed in the BLUEPRINT/NTR analysis, with number of typed SNPs for each trait.

See Excel file

Table S5: Details of results of BLUEPRINT/NTR analysis. We list a) the set of 409 significant associations at per-trait $\mathrm{FDR}<5 \%$ for the BLUEPRINT gene expression analysis, with laboratory, cell line, and TF listed for each significant annotation, along with estimated r_{f}, P-value, and whether the TF is known to be activating; b) the set of 18 significant associations at per-trait FDR $<5 \%$ for the NTR gene expression analysis; c) the side-by-side comparison of z-scores from the BLUEPRINT neutrophil expression analysis and the NTR analysis; d) the set of 286 significant associations at per-trait FDR $<5 \%$ for the BLUEPRINT H3K4me1 analysis; and e) the set of 359 significant associations at per-trait FDR $<5 \%$ for the BLUEPRINT H3K27ac analysis. Note that because the QTL summary statistics analyzed here are processed in a way that places different SNPs on different scales, the relative values of r_{f} in these results are interpretable but the absolute magnitudes are not.

See Excel file

Table S6: List of GTEx traits analyzed. We list the set of GTEx traits analyzed, with number of typed SNPs and average sample size for each trait.

See Excel file

Table S7: Results of GTEx analysis. We list a) the set of 2,330 significant associations at per-trait $\mathrm{FDR}<5 \%$ for the GTEx gene expression analysis, with laboratory, cell line, and TF listed for each significant annotation, along with estimated r_{f} and P -value; and b) the same information for the subset of results whose significance did not decrease in the conditional analysis. Note that because the QTL summary statistics analyzed here are processed in a way that places different SNPs on different scales, the relative values of r_{f} in these results are interpretable but the absolute magnitudes are not.

See Excel file

Table S8: List of diseases and complex traits analyzed. We list the set of diseases and complex traits analyzed, with sample size, number of typed SNPs, and estimated SNP-heritability for each trait.

See Excel file

Table S9: Results of SLDP analysis of 46 diseases and complex traits. We list a) the set of 77 significant associations at per-trait $\mathrm{FDR}<5 \%$ for the TF annotations, with laboratory, cell line, and transcription factor listed for each significant annotation, along with estimated r_{f} and P-value; b) the set of 4 significant associations at per-trait FDR $<5 \%$ for the alternate set of 382 annotations defined using the same set of SNPs with non-zero effects but with the directionality of effect determined by minor allele coding rather than predicted TF binding, for SNPs in the bottom quintile of the MAF spectrum; c) quantification of unsigned heritability explained by signed enrichments reported in (a). Specifically: because r_{f}^{2} for an annotation can never exceed the total proportion of heritability explained by the SNPs with nonzero values of the annotation, we computed for each association the ratio of estimated r_{f}^{2} to the proportion of SNPs with nonzero values of the annotation. We found that in some cases the signed signal was not only non-trivially different from zero but also substantial enough to imply an unsigned enrichment.

See Excel file

Table S10: Results of enrichment analysis of signed LD profile regression disease/complex trait results. We list significant gene-set enrichments for the 77 significant signed LD profile regression associations to diseases and complex traits. For (a) each of the top significant enrichments listed in Table 1 and (b) all of the significant enrichments at per-stratum $\mathrm{FDR}<5 \%$, we list: details of the annotation and phenotype underlying the signed LD profile regression result, the full name of the enriched gene set, the enrichment, the average signed LD profile covariance among LD blocks containing genes in the set (with standard error), the average signed LD profile covariance among LD block not containing genes in the set (with standard error), a p-value generated by permuting LD blocks, and a q-value calculated among the tests conducted for each signed LD profile result within each MSigDB database.

See Excel file

Table S11: Numerical results for Figure 6. For each result in the figure, we list i) the numerical values used to make the plot of $\hat{\alpha}$ against $R v$, and ii) the association summary statistics used to make the Manhattan plot, and iii) the numerical results underlying the two displayed gene-set enrichments.

See Excel file

Table S12: Numerical results for Figure 7. For each result in the figure, we list i) the numerical values used to make the plot of $\hat{\alpha}$ against $R v$, and ii) the association summary statistics used to make the Manhattan plot, and iii) the numerical results underlying the two displayed gene-set enrichments.

SNP	P (in causal set)	Causal post. prob.	Z
rs10189857	0.25	1	8.0933
rs356991	0.128176	0.512705	6.03
rs168565	0.0366951	0.14678	5.9928
rs6545816	0.154972	0.619888	5.4231
rs6545817	0.0950247	0.380099	5.3862
rs243071	0.25	1	-5.2992

Table S13: Fine mapping of EDU signal at BCL11A locus. We list the six SNPs in the 95% credible set when running the CAVIAR method with the parameter $c=4$. rs10189857 is an intronic SNP in the $B C L 11 A$ gene. (Results with $c=2$ and $c=3$ were similar.)

Cistrome ID	cell type/line	position on chr12 (kb)	TSS	body	reference
63463	K562 (myeloid)	$67561.047-67561.370$	$*$		Davis et al. ${ }^{25}$
63463	K562 (myeloid)	$67644.456-67644.877$			Davis et al. ${ }^{25}$
64734	GM12878 (LCL)	$67566.529-67566.998$		$*$	Davis et al. ${ }^{25}$
64734	GM12878 (LCL)	$67644.381-67644.827$			Davis et al. ${ }^{25}$
64919	K562 (myeloid)	$67561.765-67562.191$	$*$		Davis et al. ${ }^{25}$
64919	K562 (myeloid)	$67601.114-67601.351$		$*$	Davis et al. ${ }^{25}$
64919	K562 (myeloid)	$67644.587-67644.893$			Davis et al. ${ }^{25}$
64735	GM12878 (LCL)	$67561.943-67562.241$	$*$		Davis et al. ${ }^{25}$
64735	GM12878 (LCL)	$67566.547-67567.093$		$*$	Davis et al. ${ }^{25}$
64735	GM12878 (LCL)	$67644.406-67644.874$			Davis et al. ${ }^{25}$
73238	B cell precursor	$67562.052-67562.249$	$*$		Schjerven et al. ${ }^{26}$
57640	Nalm6 (B cell precursor)	$67552.499-67552.751$			Song et al. ${ }^{27}$

Table S14: IKZF1 ChIP-seq peaks within 10kb of the $C T C F$ gene body (chr16:67562.406kb-67639.185kb) in publicly available ChIP-seq data processed by the cistrome database. Peaks located within 2 kb of the $C T C F$ TSS and located within the CTCF gene body are indicated. Raw data were found using the Cistrome data browser. ${ }^{28}$

Cistrome ID	cell type/line	position on chr12 (kb)	TSS	body	reference
35517	OCI-Ly1 (B lymph)	$67552.542-67552.694$			Hatzi et al. ${ }^{29}$
35517	OCI-Ly1 (B lymph)	$67561.828-67561.989$	$*$		Hatzi et al. ${ }^{29}$
35517	OCI-Ly1 (B lymph)	$67562.145-67562.414$	$*$	$*$	Hatzi et al. ${ }^{29}$
35517	OCI-Ly1 (B lymph)	$67563.131-67563.598$	$*$	$*$	Hatzi et al. ${ }^{29}{ }^{29}$
35517	OCI-Ly1 (B lymph)	$67644.691-67644.898$			Hatzi et al.
35517	OCI-Ly1 (B lymph)	$67645.077-67645.307$			Hatzi et al. ${ }^{29}$
52774	T lymphocyte	$67562.240-67562.531$	$*$	$*$	Hatzi et al. ${ }^{29}$
52774	T lymphocyte	$67562.729-67562.889$	$*$	$*$	Hatzi et al. ${ }^{29}$
52303	T lymphocyte	$67561.830-67561.976$	$*$		Hatzi et al. ${ }^{29}$
52303	T lymphocyte	$67562.145-67562.304$	$*$		Hatzi et al. ${ }^{29}$
52303	T lymphocyte	$67563.760-67563.957$	$*$	$*$	Hatzi et al. ${ }^{29}$
35085	B lymphocyte	$67554.235-67554.385$			Huang et al. ${ }^{30}$
35085	B lymphocyte	$67562.163-67562.501$	$*$	$*$	Huang et al. ${ }^{30}$
35085	B lymphocyte	$67563.134-67563.543$	$*$	$*$	Huang et al. ${ }^{30}$
35085	B lymphocyte	$67563.826-67564.064$	$*$	$*$	Huang et al..30
35085	B lymphocyte	$67644.751-67645.243$			Huang et al..30
1958	B JURL-MK1 (myeloid)	$67561.844-67562.437$	$*$	$*$	Hurtz et al. ${ }^{31}$
1958	B JURL-MK1 (myeloid)	$67562.740-67562.886$	$*$	$*$	Hurtz et al. ${ }^{31}$
1958	B JURL-MK1 (myeloid)	$67563.293-67563.487$	$*$	$*$	Hurtz et al. ${ }^{31}$
1958	B JURL-MK1 (myeloid)	$67644.723-67644.898$			Hurtz et al. ${ }^{31}$
39572	B OCI-Ly1 (B lymph)	$67562.242-67562.397$	$*$		Swaminathan et al. ${ }^{32}$
39572	B OCI-Ly1 (B lymph)	$67563.257-67563.556$	$*$	$*$	Swaminathan et al. ${ }^{32}$

Table S15: BCL6 ChIP-seq peaks within 10kb of the CTCF gene body in publicly available ChIP-seq data processed by the cistrome database. Peaks located within 2 kb of the CTCF TSS and located within the $C T C F$ gene body are indicated. Raw data were found using the Cistrome data browser. ${ }^{28}$

See Excel file

Table S16: Results of signed LD profile regression using DeepSEA-based annotations. We list significant results at per-trait $\mathrm{FDR}<5 \%$ for (a) the BLUEPRINT blood molecular traits, (b) the NTR whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and complex traits analyzed. For each significant annotation, we list TF name, laboratory, and cell line, along with estimated r_{f} and P -value. The number of significant results identified by these 382 annotations was BLUEPRINT: 810; NTR: 0; GTEx: 1298; complex traits: 7.

See Excel file

Table S17: Results of signed LD profile regression using GTRD-based annotations. We list significant results at per-trait $\mathrm{FDR}<5 \%$ for (a) the BLUEPRINT blood molecular traits, (b) the NTR whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and complex traits analyzed. For each significant annotation, we list the GTRD TF name, along with estimated r_{f} and P-value. The number of significant results identified by these 149 annotations was BLUEPRINT: 313; NTR: 27; GTEx: 242; complex traits: 7 .

See Excel file

Table S18: Results of signed LD profile regression using HOCOMOCO motif-based annotations. We downloaded the 402 core human mononucleotide TF binding motifs from the HOCOMOCO database. For each of our ENCODE ChIP-seq tracks whose TF we could match to a HOCOMOCO TF motif, we then created an annotation using the HOCOMOCO motif to score SNPs inside the ChIP-seq peaks in that track. This resulted in 276 annotations. We scored each SNP allele as follows: for each allele x of the SNP, we placed the allele in the context of the reference genome, computed a PWM score $s_{i}(x)$ of the resulting sequence for all possible placements i of the PWM that overlapped the SNP, scored the allele x using $t(x)=\sum_{i} \exp s_{i}(x)$, and then used $t(a)-t(A)$ to score the SNP, where a and A are the two alleles of the SNP. We list significant results at per-trait $\mathrm{FDR}<5 \%$ for (a) the BLUEPRINT blood molecular traits, (b) the NTR whole blood eQTLs, (c) the GTEx tissue eQTLs, and (d) the diseases and complex traits analyzed. For each significant annotation, we list the TF name together with the laboratory and cell line of the ENCODE ChIP-seq track used to determine which SNPs to include in the annotation, along with estimated r_{f} and P -value. The number of significant results identified by these 276 annotations was BLUEPRINT: 9; NTR: 0; GTEx: 298; complex traits: 103.

Source (\# annotations)	Blood QTL	GTEx	Diseases/complex traits	Total (per annotation)
Basset (382)	1072	2330	77	$3479(9.1)$
DeepSEA (382)	810	1298	7	$2115(5.5)$
GTRD (184)	350	242	7	$589(3.2)$
HOCOMOCO (276)	9	298	103	$410(1.5)$

Table S19: For each source of annotations, we report the number of associations at per-trait FDR $<5 \%$ obtained upon analysis of: the blood molecular QTL data, the GTEx eQTL data, the disease/complex trait data, and all traits combined. To facilitate comparison across differently sized sets of annotations, we additionally report the total number of results per annotation for each source of annotations.

Trait	TF (num)	r_{f}	p	q
Years of ed.	BCL11A (1)	2.4%	3.9×10^{-5}	1.5×10^{-2}
Crohn's	POL2 (16)	5.3%	4.8×10^{-5}	1.5×10^{-2}
Anorexia	SP1 (1)	-8.9%	1.1×10^{-4}	4.0×10^{-2}
HDL	FOS (1)	4.8%	1.2×10^{-4}	4.6×10^{-2}
Eczema	CTCF (12)	2.7%	1.4×10^{-4}	3.4×10^{-2}
Crohn's	ELF1 (1)	4.9%	1.6×10^{-4}	1.5×10^{-2}
Lupus	CTCF (35)	-5.0%	3.6×10^{-4}	4.4×10^{-2}
Crohn's	TBP (2)	5.4%	4.9×10^{-4}	1.5×10^{-2}
Crohn's	E2F1 (1)	4.3%	6.4×10^{-4}	2.7×10^{-2}
Crohn's	TAF1 (4)	4.5%	9.2×10^{-4}	2.5×10^{-2}
Crohn's	IRF1 (1)	4.7%	9.8×10^{-4}	1.5×10^{-2}
Crohn's	ETS1 (1)	6.1%	1.4×10^{-3}	1.5×10^{-2}
Lupus	RAD21 (1)	-3.9%	4.4×10^{-3}	4.1×10^{-2}

Table S20: Distinct TF-trait associations from analysis of diseases and complex traits using signed LD profile regression. For each of 13 distinct TF-trait associations at per-trait FDR $<5 \%$, we report the associated trait, the associated TF and the total number of annotations for that TF that produced a significant result, the estimate of the functional correlation r_{f}, and the P -value for the most significant annotation.

Supplementary Figures

Figure S1: Per-annotation analyses of null calibration. (a) For each annotation, we used the Simes test ${ }^{33}$ to assess the p-value threshold at which the Benjamini-Hochberg procedure would lead to any rejections among 1000 simulated phenotypes with no unsigned enrichment or functional correlation, and we visualized the resulting set of 382 p -values using a $\mathrm{q}-\mathrm{q}$ plot. These p -values appear uniformly distributed, as would be expected in the scenario of proper calibration. (b) For each annotation, we plot the average χ^{2} statistic for that annotation across the 1000 null simulations containing confounding due to genome-wide directional effects of minor alleles on disease risk, against the magnitude of that annotation's z-score for correlation with a 100%-heritable trait whose causal SNPs are exactly the bottom fifth of the MAF spectrum with minor alleles always being trait-increasing. (Statistical significance of the trend is difficult to assess because many annotations are correlated, inducing a complex dependence structure among the 382 points on the plot.)

Figure S2: Relationship of annotations to minor alleles. For each annotation, we computed the mean and standard deviation of the predicted effect of the minor allele among all SNPs with non-zero values of the annotation. We then performed a chi-squared test for the mean being non-zero and plotted $-\log _{10}(p)$ against the mean for each annotation. The green intervals show the standard deviation, in order to give a sense for the scale on which to interpret the mean-shift. The dotted gray line indicates the threshold for FDR significance. 373 of the 382 annotations exceeded this threshold.

Figure S3: Power comparison of signed LD profile regression to additional methods. Power curves comparing signed LD profile regression using generalized least-squares (GLS; i.e., weighting) to both ordinary (i.e., unweighted) regression of the GWAS summary statistics on the signed LD profile as well as to a naive method that simply regresses the GWAS summary statistics on the raw annotation. (Left) power comparison with 19.5% of causal SNPs typed, (Right) power comparison with only 9.75% of causal SNPs typed. The real phenotypes analyzed all have at most 11.9% of causal SNPs typed. SLDP regression with default weights is the most powerful method in both regimes. Additionally, the power of the naive method suffers when fewer SNPs are typed, while the power of SLDP regression is far less sensitive to this change.

Figure S4: Effect of sample size and heritability on power. Power of signed LD profile regression as a function of (left) sample size, and (right) overall trait heritability, when proportion of heritability explained by the signed effect is held constant. Error bars indicate standard errors of power estimates.

Figure S5: Effect of reference panel on power. Power of signed LD profile regression as a function of effect size as measured by r_{f}, with either a 1000G reference panel or a randomly chosen in-sample reference panel of comparable size. Error bars indicate standard errors of power estimates.

Figure S6: Bias in estimation of additional estimands. Assessments of the bias of signed LD profile regression with an out-of-sample reference panel in estimating μ, h_{v}^{2}, r_{f}, and h_{v}^{2} / h_{g}^{2}. For definitions of these quantities, see Supplementary Note.

Figure S7: Comparison across tissues of expression levels of TFs identified by signed LD profile regression in each tissue to expression levels of TFs not identified. For each GTEx tissue in which we found significant TF expression associations, we plot the fraction of significant TFs that are expressed (TPM >5, following Weintraub et al. ${ }^{34}$) against the fraction of non-significant TFs that are expressed. Points are colored in proportion to the number of significant results in each tissue.

Figure S8: Distribution of covariance between GWAS summary statistics and signed LD profile. For each of our twelve independent results, we plot, for a variety of thresholds t, the fraction of the approximately 300 independent genomic blocks with $|\operatorname{cov}(\hat{\alpha}, R v)|>t$ in which the covariance is positive versus negative. There is an excess of blocks in which sign of the covariance matches the genome-wide direction of effect. (We note that, as this figure illustrates, our results do not imply that the sign of the covariance matches the genome-wide direction of effect in all blocks.)

Figure S9: Comparison of signed LD profile regression using Basset to results using DeepSEA. For each phenotype and each of the 382 ENCODE ChIP-seq tracks used in our main analyses, we plot the SLDP z-score of the DeepSEA-derived annotation from that track on that phenotype against SLDP z-scores of the Basset-derived annotation from that same track on that same phenotype. We display separate plots for the four sets of phenotypes analyzed in the paper; red dots indicate significant results from our main analyses using the Basset-derived annotations; correlations between the two sets of z-scores are indicated on each plot.

Figure S10: Comparison of Deepsea prediction accuracy to Basset prediction accuracy. For each of the 691 ENCODE TF ChIP-seq tracks for which we had AUPRC information using both Basset and DeepSEA, we plot the DeepSEA AUPRC for that track against the Basset AUPRC for that track. The dashed line indicates $y=x$, and the solid lines indicate our QC threshold of AUPRC> 0.3 .

Figure S11: Basset and Deepsea converge on biological signal. For each of the 382 ENCODE ChIPseq tracks used in our main analyses, we plot (i) the correlation across SNPs between the Basset-derived annotation for that track and the DeepSEA-derived annotation for that track, against (ii) the correlation across phenotypes between the z-scores of the Basset-derived annotation for that track and the z-scores of the DeepSEA-derived annotation for that track. The dashed line indicates $y=x$, and the percentages indicate the fraction of annotations in which either (i)>(ii) or (i)<(ii). The fact that the vast majority of annotations are more correlated when the correlation is measured across phenotypes indicates that the signal that is shared between Basset and DeepSEA is strongly reflected in GWAS data.

Figure S12: Comparison of signed LD profile regression using Basset to results using motifs from HOCOMOCO database. For each phenotype and each of the 276 ENCODE ChIP-seq tracks used in our main analyses that had a corresponding motif in HOCOMOCO, we plot the SLDP z-score of the HOCOMOCO-derived annotation from that track on that phenotype against SLDP z-scores of the Bassetderived annotation from that same track on that same phenotype. We display separate plots for the four sets of phenotypes analyzed in the paper; red dots indicate significant results from our main analyses using the Basset-derived annotations; correlations between the two sets of z-scores are indicated on each plot.

Figure S13: Basset and HOCOMOCO motifs converge weakly on biological signal. For each of the 276 ENCODE ChIP-seq tracks used in our main analyses that had a corresponding motif in HOCOMOCO, we plot (i) the correlation across SNPs between the Basset-derived annotation for that track and the HOCOMOCO-derived annotation for that track, against (ii) the correlation across phenotypes between the z-scores of the Basset-derived annotation for that track and the z-scores of the HOCOMOCO-derived annotation for that track. The dashed line indicates $y=x$, and the percentages indicate the fraction of annotations in which either (i)>(ii) or (i)<(ii). The majority of annotations are more correlated when the correlation is measured across phenotypes, indicating that the signal that is shared between Basset and HOCOMOCO is reflected in GWAS data. However, the trend is considerably weaker than it is when Basset and DeepSEA are compared (see Figure S11).

Appendix: the distribution of GWAS summary statistics

We define the vector $\hat{\alpha}$ of marginal correlations between SNPs and trait and derive its first two moments under a variety of relevant models, building up to the signed LD profile regression model.

Definitions

Let M be the number of SNPs in the genome. Assume we have sampled N genotype vectors x_{1}, \ldots, x_{N} i.i.d. from some population distribution, and that the phenotypes y_{1}, \ldots, y_{N} of those individuals satisfy

$$
\begin{equation*}
y_{n}=x_{n}^{T} \beta+\varepsilon_{n} \tag{18}
\end{equation*}
$$

where $\beta \in \mathbb{R}^{M}$ is the vector of true causal SNP effects on trait, and $\varepsilon_{n} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma_{e}^{2}\right)$ are independent of the x_{n}. We assume throughout this section that genotypes are standardized in the population, i.e., $E\left(x_{n m}\right)=0$ and $E\left(x_{n m}^{2}\right)=1$ for all n, m. We assume the same of the phenotype: $E\left(y_{n}\right)=0$ and $E\left(y_{n}^{2}\right)=1$ for all n. These assumptions are for expositional convenience.

Let $X \in \mathbb{R}^{N \times M}$ be the matrix whose n-th row is x_{n}^{T}, and let $Y \in \mathbb{R}^{N}$ be the vector whose n-th entry is y_{n}. The vector

$$
\begin{equation*}
\hat{\alpha}=\frac{X^{T} Y}{N} \tag{19}
\end{equation*}
$$

which has as its m-th entry the in-sample marginal correlation between SNP m and the trait, is the vector of GWAS summary statistics.

Having defined $\hat{\alpha}$, we now proceed to derive its first two moments, initially for fixed X and fixed β, and then for fixed β only. After doing so, we will impose the distributional assumption on β used in signed LD profile regression and, by marginalizing out β according to this distribution, we will obtain the result required for this paper.

Derivation for fixed X and fixed β

When both X and β are fixed, the following proposition ${ }^{35}$ gives the moments of $\hat{\alpha}$.
Proposition 1. Under the model defined above, $\hat{\alpha}$ satisfies

$$
\begin{equation*}
\hat{\alpha} \mid X, \beta \sim \mathcal{N}\left(\hat{R} \beta, \sigma_{e}^{2} \frac{\hat{R}}{N}\right) \tag{20}
\end{equation*}
$$

where $\hat{R}=X^{T} X / N$ is the sample covariance matrix of the genotypes.
Proof. Let $\varepsilon \in \mathbb{R}^{N}$ be the vector whose n-th entry is ε_{n}. When X and β are both fixed, it is easy to see that

$$
\begin{align*}
\hat{\alpha} & =\frac{1}{N} X^{T} Y \tag{21}\\
& =\frac{1}{N} X^{T}\left(X^{T} \beta+\varepsilon\right) \tag{22}\\
& =\hat{R} \beta+\frac{1}{N} X^{T} \varepsilon \tag{23}
\end{align*}
$$

The result follows from normality of ε, together with $E(\varepsilon)=0$, and $\operatorname{var}\left(X^{T} \varepsilon / N\right)=\sigma_{e}^{2} X^{T} X / N^{2}=\sigma_{e}^{2} \hat{R} / N$.

Derivation for random X and fixed β

When working with summary statistics, it is desirable to explicitly model the relationship between the unobserved individuals and the LD reference panel by assuming the individuals were drawn from a population distribution whose LD properties we are given by the reference panel. The following result states the moments of $\hat{\alpha}$ when we do so. We prove the result assuming Gaussian genotypes, but it can be shown to be robust to this assumption provided there is a lower bound on minor allele frequency relative to sample size.

Proposition 2. Under the model defined above and assuming Gaussian genotypes, $\hat{\alpha}$ satisfies

$$
\begin{equation*}
\hat{\alpha} \left\lvert\, \beta \sim\left[R \beta, \frac{1}{N}\left(R+R \beta \beta^{T} R\right)\right]\right. \tag{24}
\end{equation*}
$$

where $R=\operatorname{cov}\left(x_{n}\right) \in \mathbb{R}^{M \times M}$ is the population covariance matrix of the genotypes, and the notation [,] is used to specify the mean and covariance of the distribution without specifying any higher moments.

Proof. Application of the law of total expectation to the result from Proposition 1 readily gives

$$
\begin{align*}
E(\hat{\alpha} \mid \beta) & =E(E(\hat{\alpha} \mid X, \beta) \mid \beta) \tag{25}\\
& =E(\hat{R} \beta \mid \beta) \tag{26}\\
& =R \beta . \tag{27}
\end{align*}
$$

Application of the law of total covariance yields

$$
\begin{align*}
& \operatorname{cov}(\hat{\alpha} \mid \beta)=E(\operatorname{cov}(\hat{\alpha} \mid X, \beta) \mid \beta)+\operatorname{cov}(E(\hat{\alpha} \mid X, \beta) \mid \beta) \tag{28}\\
& \sigma_{e}^{2} \frac{\hat{R}}{N}+\operatorname{cov}(\hat{R} \beta \mid \beta) . \tag{29}
\end{align*}
$$

It is left then only to analyze $\operatorname{cov}(\hat{R} \beta \mid \beta)=E\left(\hat{R} \beta \beta^{T} \hat{R}\right)-R \beta \beta^{T} R$. To do so, we note that

$$
\begin{align*}
\operatorname{cov}(\hat{R} \beta \mid \beta)_{m m^{\prime}} & =\left(E\left(\hat{R} \beta \beta^{T} \hat{R}\right)-R \beta \beta^{T} R\right)_{m m^{\prime}} \tag{30}\\
& =\sum_{i, j}\left(E\left(\hat{R}_{m i} \beta_{i} \beta_{j} \hat{R}_{j m^{\prime}}\right)-R_{m i} \beta_{i} \beta_{j} R_{j m^{\prime}}\right) \tag{31}\\
& =\sum_{i, j} \beta_{i} \beta_{j}\left(E\left(\hat{R}_{m i} \hat{R}_{m^{\prime} j}\right)-R_{m i} R_{m^{\prime} j}\right) \tag{32}\\
& =\frac{1}{N} \sum_{i, j} \beta_{i} \beta_{j}\left(R_{m m^{\prime}} R_{i j}+R_{m j} R_{m^{\prime} i}\right) \tag{33}\\
& =\frac{1}{N} R_{m m^{\prime}} \sum_{i, j} \beta_{i} \beta_{j} R_{i j}+\frac{1}{N} \sum_{i, j} \beta_{i} \beta_{j} R_{m j} R_{m^{\prime} i} \tag{34}\\
& =\frac{1}{N} R_{m m^{\prime}} \beta^{T} R \beta+\frac{1}{N} \sum_{i, j} \beta_{i} \beta_{j} R_{m j} R_{m^{\prime} i} \tag{35}
\end{align*}
$$

where Equation 33 follows from the fact that for Gaussian genotypes, Isselis' theorem implies that

$$
\begin{equation*}
E\left(\hat{R}_{m i} \hat{R}_{m^{\prime} j}\right)=R_{m i} R_{m^{\prime} j}+\frac{1}{N}\left(R_{m m^{\prime}} R_{i j}+R_{m j} R_{m^{\prime} i}\right) \tag{36}
\end{equation*}
$$

The result of this argument can be summarized across all pairs of SNPs m, m^{\prime} by

$$
\begin{equation*}
\operatorname{cov}(\hat{R} \beta \mid \beta)=\frac{1}{N}\left(\left(\beta^{T} R \beta\right) R+R \beta \beta^{T} R\right) \tag{37}
\end{equation*}
$$

whereupon noticing that $\beta^{T} R \beta+\sigma_{e}^{2}=\operatorname{var}\left(y_{n}\right)=1$ completes the proof.
Corollary 1. Under the model defined above, $\hat{\alpha}$ approximately satisfies

$$
\begin{equation*}
\hat{\alpha} \left\lvert\, \beta \sim\left[R \beta, \frac{R}{N}\right]\right. \tag{38}
\end{equation*}
$$

where $R=\operatorname{cov}\left(x_{n}\right) \in \mathbb{R}^{M \times M}$ is the population covariance matrix of the genotypes.
Proof. For a polygenic trait, $\beta_{m} \approx O(1 / M)$, and so $\beta_{m} \beta_{m^{\prime}} \approx O\left(1 / M^{2}\right)$. This means that we have that $\left(R \beta \beta^{T} R\right)_{m m^{\prime}}=O\left(k^{2} / M^{2}\right)$ where k is the number of SNPs in non-zero LD with both SNP m and SNP m^{\prime}. Since $k \ll M, k^{2} / M^{2}$ is very small compared to $R_{m m^{\prime}}$.

We remark that the above argument does indeed require a polygenic trait. In the other extreme of a trait determined entirely by the value of one $\mathrm{SNP}, R \beta \beta^{T} R$ can take on large values around the single causal SNP.

Derivation for random X and random β

We now assume the full signed LD profile regression model, i.e., we fix some signed annotation $v \in \mathbb{R}^{M}$, and let $\beta \sim\left[\mu v, \sigma^{2}\right]$. Under this model, we have the following result.
Theorem 1. If $\beta \sim\left[\mu v, \sigma^{2}\right]$ for some $v \in \mathbb{R}^{M}$ and $\sigma^{2}>0$, then $\hat{\alpha}$ approximately satisfies

$$
\begin{equation*}
\hat{\alpha} \left\lvert\, v \sim\left[\mu R v, \sigma^{2} R^{2}+\frac{R}{N}\right]\right. \tag{39}
\end{equation*}
$$

where $R=\operatorname{cov}\left(x_{n}\right) \in \mathbb{R}^{M \times M}$ is the population covariance matrix of the genotypes.
Proof. The law of total expectation applied to the result of Corollary 1 yields $E(\hat{\alpha} \mid v)=\mu R v$ as desired. The law of total covariance yields

$$
\begin{align*}
\operatorname{cov}(\hat{\alpha} \mid v) & \approx E(\operatorname{cov}(\hat{\alpha} \mid \beta) \mid v)+\operatorname{cov}(E(\hat{\alpha} \mid \beta) \mid v) \tag{40}\\
& =\frac{R}{N}+\operatorname{cov}(R \beta \mid v) \tag{41}\\
& =\frac{R}{N}+R \operatorname{cov}(\beta \mid v) R \tag{42}\\
& =\frac{R}{N}+\sigma^{2} R^{2} \tag{43}
\end{align*}
$$

as desired.

References

[1] Brendan Bulik-Sullivan et al. "An Atlas of Genetic Correlations across Human Diseases and Traits". In: Nature genetics 47.11 (Nov. 2015), pp. 1236-1241. ISSN: 1061-4036. Doi: 10.1038/ng.3406. pmid: 26414676. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797329/.
[2] Hilary K. Finucane et al. "Partitioning Heritability by Functional Annotation Using Genome-Wide Association Summary Statistics". In: Nature Genetics 47.11 (Nov. 2015), pp. 1228-1235. ISSN: 10614036. DOI: $10.1038 / \mathrm{ng} .3404$. URL: http://www.nature.com/ng/journal/v47/n11/full/ng. 3404 . $\mathrm{html} \# /$ introduction (visited on $06 / 17 / 2017$).
[3] Tomaz Berisa and Joseph K. Pickrell. "Approximately Independent Linkage Disequilibrium Blocks in Human Populations". In: Bioinformatics 32.2 (Jan. 15, 2016), pp. 283-285. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btv546. pmid: 26395773. URL: http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4731402/.
[4] Armin Schoech et al. "Quantification of Frequency-Dependent Genetic Architectures and Action of Negative Selection in 25 UK Biobank Traits". In: bioRxiv (Sept. 13, 2017), p. 188086. Doi: 10.1101/188086. URL: https://www.biorxiv.org/content/early/2017/09/13/188086 (visited on 10/02/2017).
[5] Sarah Gallant and Gary Gilkeson. "ETS Transcription Factors and Regulation of Immunity". In: Archivum Immunologiae et Therapiae Experimentalis 54.3 (June 1, 2006), pp. 149-163. ISSN: 0004069X, 1661-4917. DOI: 10.1007/s00005-006-0017-z. URL: https://link-springer-com/article/ 10.1007/s00005-006-0017-z (visited on 10/12/2017).
[6] K Yamazaki et al. "A Genome-Wide Association Study Identifies 2 Susceptibility Loci for Crohn's Disease in a Japanese Population." In: Gastroenterology 144.4 (Apr. 2013), pp. 781-788. ISSN: 00165085. DOI: 10.1053 /j.gastro. 2012.12.021. pmid: 23266558. URL: http://europepmc .org/ abstract/MED/23266558 (visited on 05/03/2017).
[7] Yuta Fuyuno et al. "Genetic Characteristics of Inflammatory Bowel Disease in a Japanese Population". In: Journal of Gastroenterology 51.7 (July 2016), pp. 672-681. ISSN: 1435-5922. DoI: 10.1007/s00535-015-1135-3. pmid: 26511940.
[8] Tamas Varga, Zsolt Czimmerer, and Laszlo Nagy. "PPARs Are a Unique Set of Fatty Acid Regulated Transcription Factors Controlling Both Lipid Metabolism and Inflammation". In: Biochimica et Biophysica Acta 1812.8 (Aug. 2011), pp. 1007-1022. ISSN: 0006-3002. DOI: 10.1016/j.bbadis.2011.02. 014. pmid: 21382489. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117990/.
[9] Joana Torres, Silvio Danese, and Jean-Frédéric Colombel. "New Therapeutic Avenues in Ulcerative Colitis: Thinking out of the Box". In: Gut 62.11 (Nov. 1, 2013), pp. 1642-1652. ISSN: 0017-5749, 14683288. DOI: 10.1136/gutjnl-2012-303959. pmid: 24104885. URL: http://gut.bmj.com/content/ 62/11/1642 (visited on $04 / 12 / 2018$).
[10] David Ellinghaus et al. "Analysis of Five Chronic Inflammatory Diseases Identifies 27 New Associations and Highlights Disease-Specific Patterns at Shared Loci". In: Nature Genetics 48.5 (May 2016), pp. 510518. ISSN: 1546-1718. DOI: $10.1038 / \mathrm{ng} .3528$. URL: https://www. nature. com/articles/ng. 3528 (visited on $04 / 12 / 2018$).
[11] Katrina M. de Lange et al. "Genome-Wide Association Study Implicates Immune Activation of Multiple Integrin Genes in Inflammatory Bowel Disease". In: Nature Genetics 49.2 (Feb. 2017), pp. 256-261. ISSN: 1546-1718. DOI: $10.1038 / \mathrm{ng} .3760$. URL: https://www.nature.com/articles/ng. 3760 (visited on $04 / 12 / 2018)$.
[12] Ye Tian et al. "C. Elegans Screen Identifies Autophagy Genes Specific to Multicellular Organisms". In: Cell 141.6 (June 11, 2010), pp. 1042-1055. ISSN: 1097-4172. DOI: 10.1016/j.cell. 2010.04.034. pmid: 20550938.
[13] Pearl P. C. Toh et al. "Myc Inhibition Impairs Autophagosome Formation". In: Human Molecular Genetics 22.25 (Dec. 20, 2013), pp. 5237-5248. ISSN: 0964-6906. DOI: $10.1093 / \mathrm{hmg} / \mathrm{ddt} 381$. URL: https://academic.oup.com/hmg/article/22/25/5237/576587 (visited on 04/12/2018).
[14] Franz X. Schaub et al. "Myc-Directed Suppression of Autophagy Provides Therapeutic Vulnerabilities Targeting Amino Acid Homeostasis". In: Blood 126.23 (Dec. 3, 2015), pp. 2450-2450. ISSN: 0006-4971, 1528-0020. URL: http://www.bloodjournal.org/content/126/23/2450 (visited on 04/12/2018).
[15] Paul Henderson and Craig Stevens. "The Role of Autophagy in Crohn's Disease". In: Cells 1.3 (Aug. 3, 2012), pp. 492-519. ISSN: 2073-4409. DOI: $10.3390 / \mathrm{cells} 1030492$. pmid: 24710487. URL: https : //www.ncbi.nlm.nih.gov/pmc/articles/PMC3901108/.
[16] Latifa Bakiri et al. "Liver Carcinogenesis by FOS-Dependent Inflammation and Cholesterol Dysregulation". In: Journal of Experimental Medicine (Mar. 29, 2017), jem.20160935. ISSN: 0022-1007, 1540-9538. DOI: $10.1084 /$ jem. 20160935. pmid: 28356389. URL: http://jem.rupress.org/content/early/ 2017/03/28/jem. 20160935 (visited on 10/12/2017).
[17] Fabian Bartz et al. "Identification of Cholesterol-Regulating Genes by Targeted RNAi Screening". In: Cell Metabolism 10.1 (July 8, 2009), pp. 63-75. ISSN: 1550-4131. DOI: 10.1016/j.cmet. 2009.05.009. URL: http://www.sciencedirect.com/science/article/pii/S1550413109001570.
[18] J. Kálmán et al. "High Cholesterol Diet down Regulates the Activity of Activator Protein-1 but Not Nuclear Factor-Kappa B in Rabbit Brain". In: Life Sciences 68.13 (Feb. 16, 2001), pp. 1495-1503. ISSN: 0024-3205. pmid: 11253166.
[19] Birgit Knebel et al. "A Mutation in the C-Fos Gene Associated with Congenital Generalized Lipodystrophy". In: Orphanet Journal of Rare Diseases 8 (Aug. 7, 2013), p. 119. ISSN: 1750-1172. DOI: 10. 1186/1750-1172-8-119. URL: https://doi.org/10.1186/1750-1172-8-119.
[20] Shuichi Fujioka et al. "NF- x B and AP-1 Connection: Mechanism of NF- x B-Dependent Regulation of AP-1 Activity". In: Molecular and Cellular Biology 24.17 (Sept. 2004), pp. 7806-7819. ISSN: 0270-7306. DOI: 10.1128/MCB.24.17.7806-7819.2004. pmid: 15314185. URL: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC507000/.
[21] F. Jeffrey Field, Kim Watt, and Satya N. Mathur. "TNF-Alpha Decreases ABCA1 Expression and Attenuates HDL Cholesterol Efflux in the Human Intestinal Cell Line Caco-2". In: Journal of Lipid Research 51.6 (June 2010), pp. 1407-1415. ISSN: 1539-7262. DOI: 10.1194/jlr .M002410. pmid: 20103810.
[22] Laura A. Warg et al. "The Role of the E2F1 Transcription Factor in the Innate Immune Response to Systemic LPS". In: American Journal of Physiology. Lung Cellular and Molecular Physiology 303.5 (Sept. 2012), pp. L391-400. ISSN: 1522-1504. DOI: 10.1152/ajplung.00369.2011. pmid: 22707615.
[23] Lei Ying et al. "Chronic Inflammation Promotes Retinoblastoma Protein Hyperphosphorylation and E2F1 Activation". In: Cancer Research 65.20 (Oct. 15, 2005), pp. 9132-9136. ISSN: 0008-5472. DOI: 10.1158/0008-5472. CAN-05-1358. pmid: 16230367.
[24] Rossana Colla Soletti et al. "Immunohistochemical Analysis of Retinoblastoma and β-Catenin as an Assistant Tool in the Differential Diagnosis between Crohn's Disease and Ulcerative Colitis". In: PLOS ONE 8.8 (Aug. 14, 2013), e70786. ISSN: 1932-6203. DOI: $10.1371 /$ journal . pone. 0070786. URL: http://journals.plos.org/plosone/article?id=10.1371/journal. pone. 0070786 (visited on 10/13/2017).
[25] Carrie A. Davis et al. "The Encyclopedia of DNA Elements (ENCODE): Data Portal Update". In: Nucleic Acids Research 46 (D1 Jan. 4, 2018), pp. D794-D801. ISSN: 1362-4962. DOI: 10.1093/nar/ gkx1081. pmid: 29126249.
[26] Hilde Schjerven et al. "Genetic Analysis of Ikaros Target Genes and Tumor Suppressor Function in BCR-ABL1+ Pre-B ALL". In: The Journal of Experimental Medicine 214.3 (Mar. 6, 2017), pp. 793814. ISSN: 1540-9538. DOI: 10.1084/jem.20160049. pmid: 28190001.
[27] Chunhua Song et al. "Targeting Casein Kinase II Restores Ikaros Tumor Suppressor Activity and Demonstrates Therapeutic Efficacy in High-Risk Leukemia". In: Blood 126.15 (Oct. 8, 2015), pp. 18131822. ISSN: 1528-0020. DOI: 10.1182/blood-2015-06-651505. pmid: 26219304.
[28] Shenglin Mei et al. "Cistrome Data Browser: A Data Portal for ChIP-Seq and Chromatin Accessibility Data in Human and Mouse". In: Nucleic Acids Research 45 (D1 Jan. 4, 2017), pp. D658-D662. ISSN: 1362-4962. DOI: 10.1093/nar/gkw983. pmid: 27789702.
[29] Katerina Hatzi et al. "A Hybrid Mechanism of Action for BCL6 in B Cells Defined by Formation of Functionally Distinct Complexes at Enhancers and Promoters". In: Cell Reports 4.3 (Aug. 15, 2013), pp. 578-588. ISSN: 2211-1247. DOI: 10.1016/j.celrep.2013.06.016. pmid: 23911289.
[30] Chuanxin Huang, Katerina Hatzi, and Ari Melnick. "Lineage-Specific Functions of Bcl-6 in Immunity and Inflammation Are Mediated by Distinct Biochemical Mechanisms". In: Nature Immunology 14.4 (Apr. 2013), pp. 380-388. ISSN: 1529-2916. DOI: 10.1038/ni.2543. pmid: 23455674.
[31] Christian Hurtz et al. "BCL6-Mediated Repression of P53 Is Critical for Leukemia Stem Cell Survival in Chronic Myeloid Leukemia". In: The Journal of Experimental Medicine 208.11 (Oct. 24, 2011), pp. 2163-2174. ISSN: 1540-9538. DOI: 10.1084/jem.20110304. pmid: 21911423.
[32] Srividya Swaminathan et al. "BACH2 Mediates Negative Selection and P53-Dependent Tumor Suppression at the Pre-B Cell Receptor Checkpoint". In: Nature Medicine 19.8 (Aug. 2013), pp. 1014-1022. ISSN: 1546-170X. DOI: 10.1038/nm. 3247. pmid: 23852341.
[33] R John Simes. "An Improved Bonferroni Procedure for Multiple Tests of Significance". In: Biometrika 73.3 (1986), pp. 751-754.
[34] Abraham S. Weintraub et al. "YY1 Is a Structural Regulator of Enhancer-Promoter Loops". In: Cell 171.7 (Dec. 14, 2017), 1573-1588.e28. ISSN: 0092-8674, 1097-4172. DOI: 10.1016/j.cell. 2017.11.008. pmid: 29224777. URL: http://www.cell.com/cell/abstract/S0092-8674(17)31317-X (visited on 04/12/2018).
[35] Huwenbo Shi, Gleb Kichaev, and Bogdan Pasaniuc. "Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data". In: The American Journal of Human Genetics 99.1 (July 7, 2016), pp. 139-153. ISSN: 0002-9297, 1537-6605. DOI: 10.1016/j.ajhg.2016.05.013. pmid: 27346688. URL: http : / / www . cell . com/ajhg/abstract / S0002-9297(16) 30148-3 (visited on $06 / 17 / 2017)$.

