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Supplemental Figures
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Supplemental Figure S1: a, Examples of mean population rates from a spatially ordered model
with slow inhibition (blue) (Fig. 2b, green), a spatially ordered model with fast inhibition (red)
(Fig. 2b, purple), and a disordered model with slow inhibition (Fig. 2a, green). b, Pair-wise
correlation as a function of distance between neuron pairs for the three models.
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Supplemental Figure S2: a, One-dimensional spatial model shows a rapid increase in mean
pairwise correlation with increasing time scale of inhibitory synaptic current (compare with
Fig. 2e). b, Example rasters of network activity when τi = 10 ms. c, Same as b with τi = 15
ms. Parameters of the one dimensional model are the same as those in the two-dimensional
spatial model in Fig. 2b, except that neurons are ordered on interval [0, 1].
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Supplemental Figure S3: Relationship between correlation change and firing rate change of the
pair by attention. (A) Histogram of firing rate change by attention. (B) Correlation change of
neuron pair i and j as a function for firing rate change of neuron i (x-axis) and firing rate change
of neuron j (y-axis). (C) Correlation change as a function of the mean firing rate change of the
pair. Parameters of the network are the same as Fig. 3 with µI = 0.2 pA for unattended state
and µI = 0.35 pA for attended state. A total of 500 excitatory neurons are sampled from MT
layer and there is a total of 2025 spike counts per neuron to compute the correlation for each
attentional state. ∆=Attended-Unattended.
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Supplemental Figure S4: Factor analysis of the multi-electrode recordings from V41. a, The
first five largest eigenvalues of the shared component of the spike count covariance matrix.
Each line is for data from each recording session (72 in total, trial number and unit number of
each session see Table S1). b, Same as a for the attended state. c, The difference between the
largest eigenvalues and the difference between the mean covariances from the unattended and
attended states are correlated. d, Histogram of the modes that maximize the cross-validated data
likelihood across sessions. More details see Experimental methods and Statistical methods.
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Session # Unit # Trial # (Att.) Trial # (Unatt.) Session # Unit # Trial # (Att.) Trial # (Unatt.)
1 50 702 361 37 21 364 744
2 80 361 702 38 38 744 364
3 27 408 349 39 22 306 338
4 49 349 408 40 44 338 306
5 26 795 1038 41 46 516 480
6 35 1038 795 42 62 480 516
7 56 280 624 43 43 620 509
8 73 624 280 44 55 509 620
9 26 1109 992 45 43 601 543

10 47 992 1109 46 52 543 601
11 30 673 824 47 40 484 658
12 47 824 673 48 62 658 484
13 33 597 622 49 37 452 320
14 79 622 597 50 63 320 452
15 24 242 619 51 37 548 657
16 51 619 242 52 65 657 548
17 14 261 583 53 39 369 282
18 39 583 261 54 57 282 369
19 26 399 666 55 41 413 501
20 46 666 399 56 53 501 413
21 25 696 800 57 35 601 486
22 46 800 696 58 49 486 601
23 30 751 861 59 36 392 414
24 56 861 751 60 61 414 392
25 25 670 724 61 35 483 421
26 50 724 670 62 50 421 483
27 28 470 414 63 32 592 433
28 52 414 470 64 55 433 592
29 25 1728 1843 65 35 692 439
30 50 1843 1728 66 53 439 692
31 32 515 643 67 36 655 437
32 67 643 515 68 49 437 655
33 16 412 566 69 36 390 352
34 42 566 412 70 47 352 390
35 19 752 730 71 32 507 385
36 42 730 752 72 71 385 507

Table S1: Units number and trial number of each recording session for the Factor analysis of
the multi-electrode recordings from V41 (Fig. 4a, Fig. S4).

Supplementary Methods

Hidden variable model

First, we consider the attentional effect on noise correlations in one cortical area.
Let R be the response variable of the neurons in that area and H be the external
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source of variability which projects to R with strength β; R = X + βH . Here
we take the variance of H , Varα(H), to be dependent on the attentional state
α ∈ {U,A}, and for now X is an attention independent source of fluctuating
input. Denote PH = β2VarU (H)

VarU (R)
= β2VarU (H)

Var(X)+β2VarU (H)
as the influence of H on R

(0 < PH < 1). Then the constraint on H is:

∆
U−A

Var(H)

VarU(H)
=

1

PH

∆
U−A

Var(R)

VarU(R)
. (1)

Here ∆
U−A

Var(H) = VarU(H) − VarA(H) (same for ∆
U−A

Var(R)). The popula-

tion data provide values for ∆
U−A

Var(R)/VarU(R). In Fig. 1c (main text) the

change in Var(H), ∆
U−A

Var(H)/VarU(H), is plotted as a function of the influ-

ence ofH onR, PH , with the V4 data (Fig. 1b) determining ∆
U−A

Var(R)/VarU(R) =

0.3.
Next, we consider the correlation between two cortical areas. Let R be the

neural response from MT and X be the neural response from V1. Suppose all
the variability inR is fromX and the transfer function ofX toR can be linearly
approximated as δR = αδX , then

Var(R) = α2Var(X),

cov(R,X) = αVar(X).

which gives
Var(R) = cov(R,X)2/Var(X). (2)

Hence any decrease in Var(R) by attention predicts a decrease in cov(R,X),
which is in contradiction with the electrophysiological recordings2 (Fig. 1b,d).

Assume a hidden source of variability, H , that projects to both R and X
with strengths β and κ, respectively. Specifically, R = αX + βH and X =
X0 + κH , where cov(X0, H) = 0. Suppose Var(X) = 1 and β and κ are
attention independent, then

Var(R) = α2 +
(
β2 + 2βκα

)
Var(H),

cov(R,X) = α + βκVar(H).
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In order to have an attention-mediated simultaneous reduction in Var(R) and an
increase in cov(R,X) we need α increases and Var(H) decreases with attention.
The relative change in cov(R,X) by attention is

∆
A−U

cov(R,X)

covU(E,X)
=

∆
A−U

α− βκ ∆
U−A

Var(H)

αU + βκVarU(H)
. (3)

An attention-mediated increase of the correlation between V1 ans MT implies
∆
A−U

cov(R,X) > 0, which gives

∆
A−U

α > βκ ∆
U−A

Var(H). (4)

The reduction in Var(R) by attention is

∆
U−A

Var(R) = −
(
α2
A − α2

U

)
+ β2 ∆

U−A
Var(H) + 2βκ

(
αUVarU(H)− αAVarA(H)

)
= −

(
2αU + ∆

A−U
α

)
∆
A−U

α + β2 ∆
U−A

Var(H) + 2βκαU ∆
U−A

Var(H)− 2βκVarA(H) ∆
A−U

α

= β2 ∆
U−A

Var(H)− 2αU ∆
A−U

cov(R,X)−
(

∆
A−U

α

)2

− 2βκVarA(H) ∆
A−U

α

Hence the relative reduction in Var(R) is

∆
U−A

Var(R)

VarU(R)
=

∆
U−A

Var(H)

VarU(H)
PH−2αU

∆
A−U

cov(R,X)

covU(R,X)

covU(R,X)

VarU(R)
−

(
∆
A−U

α

)2

+ 2βκVarA(H) ∆
A−U

α

VarU(R)
(5)

The second term from the RHS of Eq. (5) is

2αU
covU(R,X)

VarU(R)

∆
A−U

cov(E,X)

covU(E,X)
=

2α2
U + 2βκαUVarU(H)

α2
U + (β2 + 2βκαU) VarU(H)

∆
A−U

cov(R,X)

covU(R,X)

> (1− PH)
∆
A−U

cov(R,X)

covU(R,X)
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With inequality (4), the third term from the RHS of Eq. (5) is(
∆
A−U

α

)2

+ 2βκVarA(H) ∆
A−U

α

VarU(R)
=

∆
A−U

α

(
∆
A−U

α + 2βκVarA(H)

)
β2VarU(H)

PH

>

(
βκ ∆

U−A
Var(H)

)(
βκ ∆

U−A
Var(H) + 2βκVarA(H)

)
β2VarU(H)

PH

=
β2κ2 ∆

U−A
Var(H)

(
VarU(H) + VarA(H)

)
β2VarU(H)

PH

> κ2VarU(H)
∆
U−A

Var(H)

VarU(H)
PH

Hence,

∆
U−A

Var(R)

VarU(R)
<

(
1− κ2VarU(H)

) ∆
U−A

Var(H)

VarU(H)
PH −

∆
A−U

cov(R,X)

covU(R,X)
(1− PH)

which gives the constraint on H as

∆
U−A

Var(H)

VarU(H)
PH >

∆
U−A

Var(R)

VarU(R)

1

1− κ2VarU(H)
+

∆
A−U

cov(R,X)

covU(R,X)

1− PH
1− κ2VarU(H)

.

(6)
where 0 < 1 − κ2VarU(H) = VarU (X0)

Var(X) < 1, since Var(X) = Var(X0) +

κ2Var(H) = 1. Therefore, the lower bound on
∆

U−A
Var(H)

VarU (H)
PH increases with

the relative increase in cov(R,X),
∆

A−U
cov(R,X)

covU (R,X) , and the projection strength of H
on X , κ.

Fig. 1c (bottom) is plotted using Eq. (1) and Fig. 1e (bottom) is plotted using

Eq. 6 with
∆

A−U
cov(R,X)

covU (R,X) = 1 and κ2Var(H) ranges from 0 to 0.5 for different
curves.
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Supplementary Movie Captions

Movie S1: Spiking activities of a spatially ordered network with fast inhibition
(Fig. 2aii). Each black dot indicates that the neuron at spatial position (x; y)
fired within one millisecond of the time stamp shown on top.

Movie S2: Same as Movie S1 for a spatially ordered network with slow inhibi-
tion (Fig. 2aiv).

Movie S3: Spiking activities of the MT excitatory population from the three
layered spiking network model in the unattended state (Fig. 3a, 4b).

Movie S4: Same as Movie S3 for a network with broader inhibition in MT (Fig.
4d).
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