
Supplementary Materials 
Mutual information matrices 
The raw pairwise mutual information is a matrix, where each element i, j corresponds to 
the mutual information between residues i and j. Because there is very low MI between 
most pairs of residues, it is informative to visualize this information as a sparse graph, 
as shown in the main text. However, a matrix can provide a complete representation of 
all the pairwise interactions in a way that a graph embedding cannot. Those data are 
shown here: 
 

 
Figure S1: Raw mutual information matrices for TEM-1 (left) and CTX-M-9 (right) are 
sparse.   
 
We might further be interested in the dependence of the mutual information on finite 
sampling. We thus performed 100 rounds of bootstrapping wherein N simulation 
trajectories were drawn at random with replacement from our set of simulations. To 
estimate error, we computed the standard deviation of the values of the mutual 
information that is computed on the bootstrapped data. 
 



 
Figure S2: Bootstrapped error of mutual information matrices for TEM-1 (left) and CTX-
M-9 (right) is globally low compared to raw mutual information (Fig S1). 
 
We further were interested in how the variability would affect the absolute value of the 
mutual information. For this reason, we plotted rows of the mutual information with 
error bars for a few residues of interest. 
 

 
Figure S3: Residue pairs with high normalized mutual information have low 
bootstrapped error compared to their values. Each point represents the mutual 
information between the residue indicated by the color of the point and the residue 
indicated on the x-axis. All the points of a single color thus represent an entire row of 
the normalized MI matrix. Error bars are the standard deviation of 100 trials of 
bootstrapping. 
  



SASA-eigenvector correlations confirm that most 
exposons are slow 
To identify the principal motions giving rise to the exposure or burial of various 
residues, we compute Pearson’s correlation coefficient between the eigenvectors’ 
weights and the solvent accessibility of each residue. This yields an 𝑛res 	×	𝑛eig matrix. 
We capped the number of eigenvectors at 500 because any additional eigenvectors 
tend to correspond to very fast, less relevant motions. 

 

 
Figure S4: Slower motions (lower eigenvector rank) tend to correlate better with solvent 
accessibility changes. Pearson’s coefficient of correlation R between sidechain solvent 



accessibility and eigenvector weight across all states for each residue and eigenvector 
for TEM-1 (top) and CTX-M-9 (bottom). 

The maximum flux pathway between open and closed 
states contains structures very close to the ligand-bound 
state 

Figure S5: A structure from the 
maximum flux pathway between 
the extrema of the L286 
eigenmode of TEM-1 (green) 
resembling even more closely the 
bound crystal structure of TEM-1 
(blue) with CBT (yellow). 
Specifically, the extent of opening 
between the two helices forming 
the known TEM-1 allosteric 
pocket is similar in these two 
structures. 

 

Estimation of druggability of S243 pocket 
We used fpocket1 to estimate the druggability of every frame associated with a 
microstate where S243 is classified as exposed. We then filtered pockets for S243 
gamma oxygen involvement and for the lack of involvement of the active site serine, 
S70. As noted in the main text, traditional pocket detection algorithms have a tendency 
to combine this pocket with the active site, as they often form a channel-like 
connection, despite being geometrically distinct. We expect the druggabilities noted 
here to be lower bound estimates for druggability, the druggability score was trained 
on crystal structures of ligands, which are typically adopt a more closed conformation 
created by contributions of induced fit, whereas in simulation these same pockets are 
often much more open.2 



 
Figure S6: Druggability and equilibrium probabilities for pockets involving S243.  Top, 
the distribution of FPocket druggability score for each microstate with exposed S243. 
Bottom, the equilibrium probability of each of those states. Two of the three most 
probable clusters (2562 and 3469) achieve scores above 0.5 (the proposed limit for 
druggability) and one (2562) produces pockets with scores exceeding 0.8. 

Activity of labeled enzyme 

 
 
Figure S7: Activity of enzyme before (blue) and after (red) addition of covalent DTNB 
label for TEM-1 S243C (left) and CTX-M-9 (right). Blue points are unlabeled enzyme, 
red points are labeled enzyme. Points were taken in triplicate. Fits are to a Michaelis-
Menten model. 



 
Supplementary Table 1. Parameters for Michaelis-Menten model of enzyme activity. 
Error is the standard deviation from 100 trials of bootstrapping. 
 kcat (s-1) KM (µM) 

TEM-1 M182T S243C 354 ± 13 88 ± 5 
Labeled TEM-1 M182T S243C 337 ± 9 22 ± 2 

CTX-M-9 254 ± 10 28 ± 3 
Labeled CTX-M-9 65 ± 8 114 ± 21 

 

Affinity clustering is stable to damping parameter changes 

 
Figure S8: Affinity clustering is stable across most values of the damping parameter. In 
this figure, each row represents the assignment of each residue to a cluster for a 
particular choice of damping parameter. Each color denotes a single cluster. Thus, 
each vertical bar of color represents a range of damping parameter choices for which a 
residue is assigned to the same cluster. Hence, because there are few color 
perturbations in each column, many residues are assigned to the same cluster for all 
damping parameter choices < 0.95. 

Markov State Model construction 
We built our Markov state models using the discretization discovered by the khybrid 
clustering algorithm on SASA feature vectors (see Methods). We then verified our 
choice of kcenters stopping condition (2.6 nm2 for TEM-1 and 3.0 nm2 for CTX-M-9) 
and chose our lag times (4 ns for TEM-1 and 0.6 ns for CTX-M-9) using the implied 
timescales test. 
 



 
Figure S9: Implied timescales tests for TEM-1 (left) and CTX-M-9 (right). 

Time-resolved DTNB thiol labeling by stopped-flow 
To measure the labeling rate of any particular residue, we prepared the cysteine 
mutant (see Methods) and ran triplicate DNTB labeling experiments both with and 
without protein. We subtracted the baseline absorbance of DTNB in buffer from the 
labeling trace and fit to a single exponential.  Each point in Fig 2b and e represents the 
results of such a procedure. A representative fit to the data for TEM-1 at 500 µM DTNB 
is shown below. 



 
Fig S10: A representative trace of absorbance over time for a sample of 9 µM TEM-1 
S243C mixed with 500 µM DTNB along with a single exponential fit (top) and the 
residuals to that same model (bottom). For the top figure, red is raw data and dashed 
black is the fit. For the bottom figure, red represents the raw residuals and black 
represents a Gaussian convolution of that data. 
 
Supplementary Table 2. Parameters of Linderstrøm-Lang model of DTNB labeling. 
Error is the standard deviation from 100 trials of bootstrapping. 

 TEM-1 M182T S243C CTX-M-9 
𝑘int 6.83 ± 1.18 mM-1 s-1 71.5 ± 5.3 mM-1 s-1 
𝐾 1.10 x 10-2 ± 1.9 x 10-3 2.34 x 10-4 ± 7.8 x 10-5 
𝑘op N/A 1.22 x 10-2 ± 2.05 x 10-3 s-1 

𝑘cl N/A 51.3 ±  14.4 s-1 
𝐾 × 𝑘int 7.5 x 10-2 ± 1.5 x 10-3 mM-1 s-1 1.67 x 10-2 ± 5.70 x 10-3 mM-1 s-1 

 



Measurement of TEM-1 S243C 𝑘int 

 
 
Figure S11: Rate of labeling TEM-1 S243C as a function of varying DTNB 
concentration in 6 M urea. The slope of the linear fit is the intrinsic rate of labeling (𝑘int) 
of this residue. Error is the standard deviation between triplicate runs at each DTNB 
concentration. 

Estimation of global unfolding rates of TEM-1 S243C and 
CTX-M-9   

  



Fig S12: Rates of unfolding of TEM-1 S243C (top) and CTX-M-9 (bottom) as a function 
of urea concentration. A linear fit is used to extrapolate to the rate of global unfolding 
of each protein to the rate in the absence of urea. The rate of unfolding for TEM-1 
S234C is 1.054 x 10-5 ± 1.371 x 10-5 s-1 whereas the rate of unfolding for CTXM9 is 
1.308 x 10-5 ± 2.274 x 10-5 s-1. Error is estimated using the standard deviation from 100 
rounds of bootstrapping. 

Protein stability measurements 

 
 
Fig S13: Circular dichroism as a function of urea concentration (solid circles) fit to a 
two-state model (equation S1) of unfolding for TEM-1 S243C (left) and CTX-M-9 (right). 
 

(1) CD	(Θ) = Θ67Θ89:(∆<68=>68[@ABC])/FG	
H79:(∆<68=>68[@ABC])/FG

 
 
where ΘI and ΘK are the Circular Dichroism signals at 222 nm for the unfolded and 
native states. ∆GIK	is the extrapolated free energy change in 0 M urea between the 
unfolded and native states, and mIK is a proportionality term related to the steepness 
of the linear fit of the unfolded to native state transition.3 
 
Supplementary Table 3. Equilibrium Fit Parameters. Errors are standard deviations. 

 DGun (kcal mol-1) mun (kcal mol-1 M-1) Cm (M) 
TEM-1 M182T S243C 5.0 ± 0.3 1.12 ± 0.07 4.5 ± 0.4  

CTX-M-9 5.5 ± 0.2  3.0 ± 0.1 1.83 ± 0.09  

Observed labeling is bounded above by EX1 and EX2 
labeling rates. 
As defined in Methods of the main text, the observed labeling rates of the three 
regimes are defined as: 
 



𝑘obs =
𝑘op𝑘int[DTNB]

𝑘op + 𝑘cl + 𝑘int[DTNB]
 

 

𝑘obs
(EX2) =

𝑘op
𝑘cl

𝑘int[DTNB] = 𝐾𝑘int[DTNB] 

 
 
𝑘obs
(EX1) = 𝑘op 

 
We want to show that 𝑘obs < 	𝑘obs

(EX2) and 𝑘obs < 	𝑘obs
(EX1). 

 
Hypothesis I: 𝒌obs < 	𝒌obs

(EX2) 
 
𝑘obs < 	𝑘obs

(EX2) 
 

𝑘op𝑘int[DTNB]
𝑘op + 𝑘cl + 𝑘int[DTNB]

< 	
𝑘op
𝑘cl

𝑘int[DTNB] 

 
1

𝑘op + 𝑘cl + 𝑘int[DTNB]
< 	

1
𝑘cl

 

 
𝑘op + 𝑘cl + 𝑘int[DTNB] > 	𝑘cl 
 
𝑘op + 𝑘int[DTNB] > 	0, which of course is true, since each term is greater than zero 
individually. 
 
Hypothesis II: 𝑘obs < 	𝒌obs

(EX1) 
 
𝑘obs < 	𝑘obs

(EX1) 
 

𝑘op𝑘int[DTNB]
𝑘op + 𝑘cl + 𝑘int[DTNB]

< 	𝑘op 

 
𝑘int[DTNB]

𝑘op + 𝑘cl + 𝑘int[DTNB]
< 1 

 
𝑘int[DTNB] < 𝑘op + 𝑘cl + 𝑘int[DTNB] 
 
0 < 𝑘op + 𝑘cl, which of course is true, since each term is greater than zero individually. 
 



Thus, since  𝑘obs < 	𝑘obs
(EX2) and 𝑘obs < 	𝑘obs

(EX1) we can conclude that 𝑘obs <
	min	[𝑘obs

(EX2), 𝑘obs
(EX1)], i.e. that the EX1 and EX2 observed rates serve as strict upper 

bounds to the EXX observed rate. 
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