Supplemental Figure 1

	B
- w^{1118}	¢ O $^{\text {d }}$ 40\%
-osa ${ }^{308 /+}$	$\begin{array}{rr}\text { 능 } & 20 \% \\ \text { U. } \\ \text { O } & 0 \%\end{array}$

Regenerating

S1 Fig. The PBAP complex is required for regenerative growth whereas the

BAP complex is not.

(A) Pupariation rates of animals during normal development at $18^{\circ} \mathrm{C} . \mathrm{n}=79$ pupae (osa ${ }^{308 /+}$) and 173 pupae (w^{1118}) from 3 independent experiments.
(B) Pupariation rates of animals after tissue damage $\left(30^{\circ} \mathrm{C}\right)$ and regeneration $\left(18^{\circ} \mathrm{C}\right) . \mathrm{n}=101$ pupae (osa $\left.{ }^{308 /+}\right)$ and 155 pupae $\left(w^{1118}\right)$ from 3 independent experiments. Because the temperature shift to $30^{\circ} \mathrm{C}$ in the ablation protocol increases the developmental rate, the pupariation timing of regenerating animals (B) cannot be compared to the undamaged control animals (A).
(C) Wild-type $\left(w^{1118}\right)$ regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(D) brm²/+ regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(E) Comparison of regenerating wing pouch size at 24 hours after imaginal disc damage in brm²/+ and wild-type ($\left.w^{1118}\right)$ animals. $\mathrm{n}=11$ wing discs $\left(\mathrm{brm}^{2} /+\right)$ and 10 wing discs ($\left.w^{1118}\right)$.
(F) Wild-type (w^{1118}) regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(G) osa ${ }^{308 /+}$ regenerating wing disc at R24 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(H) Wild-type $\left(w^{1118}\right)$ regenerating wing disc at R48 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(I) osa ${ }^{308 /+}$ regenerating wing disc at R 48 with wing pouch marked by anti-Nubbin (green) immunostaining. DNA (blue) was detected with Topro3.
(J) Comparison of regenerating wing pouch size at 24 and 48 hours after imaginal disc damage and regeneration in osa ${ }^{308} /+$ and wild-type (w^{1118}) animals. At R24, $\mathrm{n}=8$ wing discs (osa ${ }^{308 /+)}$ and 10 wing discs (w^{1118}). At R48, $\mathrm{n}=6$ wing discs (osa ${ }^{308 /+)}$ and 8 wing discs ($\left.w^{1118}\right)$.
(K) Average number of mitotic cells (marked with PH3 immunostaining) per $\mu \mathrm{m}^{2}$ in the regenerating wing primordium at R24 in bap1704135/+ and wild-type (w^{1118}) animals. $\mathrm{n}=8$ wing discs (bap170 $\left.{ }^{\Delta 135 /+}\right)$ and 10 wing discs ($\left.w^{1118}\right)$.
(L) Wild-type (w^{1118}) regenerating wing disc at R24 with Nubbin (green) (L') and cleaved Caspase 3 (red)(L'") immunostaining. DNA (blue)(L'") was detected with Topro3.
(M) brm²/+ regenerating wing disc at R24 with Nubbin (green)(M') and cleaved Caspase 3 (red)(M") immunostaining. DNA (blue)(M"') was detected with Topro3. $(\mathrm{N}-\mathrm{O})$ Wild-type $\left(w^{1118}\right)(\mathrm{N})$ and $b r m^{2 /+}(\mathrm{O})$ regenerating wing discs at R 24 with Myc immunostaining.
(P) Quantification of anti-Myc immunostaining fluorescence intensity in the wing pouch in $b r m^{2 /+}$ and wild-type $\left(w^{1118}\right)$ regenerating wing discs at R24. $\mathrm{n}=11$ wing
discs ($\mathrm{brm}^{2} /+$) and 12 wing discs $\left(w^{1118}\right)$.
$(\mathrm{Q}-\mathrm{R})$ Wild-type $\left(w^{1118}\right)(\mathrm{Q})$ and osa ${ }^{308 /+}(\mathrm{R})$ regenerating wing discs at R 24 with Myc immunostaining.
(S) Quantification of anti-Myc immunostaining fluorescence intensity in the wing pouch in osa ${ }^{308 /+}$ and wild-type $\left(w^{1118}\right)$ regenerating wing discs at R24. $\mathrm{n}=6$ wing discs (osa ${ }^{308 /+)}$) and 8 wing discs ($\left.w^{1118}\right)$.

Error bars are SEM. Scale bars are $100 \mu \mathrm{~m}$ for all wing discs images. *** $\mathrm{p}<$ 0.01, Student's t-test.

Supplemental Figure 2

S2 Fig. The function of BAP in preventing P-to-A transformation.

(A-B) Wild-type $\left(w^{1118}\right)(A)$ and osa ${ }^{308 /+}(B)$ regenerating wing discs at $R 24$ with phospho-JNK immunostaining.
(C-D) Wild-type (w^{1118}) (C) and tara ${ }^{1 /+}(\mathrm{D})$ regenerating wing discs at R 48 with Osa immunostaining.
(E-H) Wild-type (w^{1118}) regenerating wing discs at $0,24,48$, and 72 hours after imaginal disc damage and regeneration with Osa immunostaining.

Scale bars are $100 \mu \mathrm{~m}$ for all wing discs images.

