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Supplementary Methods 
 
Processing of de novo mutation data 
For each de novo mutation (DNM), we obtained parental ages at conception of the child (proband) and the 
position, allele and parent-of-origin information from the Supplementary Material of the publication for 
one dataset (Jónsson, Sulem, Kehr, et al. 2017) and by personal communication with the authors for the 
replication dataset (Goldmann et al. 2016; Wong et al. 2016). We considered a mutation as “phased” if 
the parental haplotype on which it arose was determined by either informative flanking variant in the read 
or from transmission to a third generation (Jónsson et al. 2017, Goldmann et al. 2016). See Table S2 for a 
comparison of summary statistics of these datasets. 
 
For both datasets, we removed indels and mutations on X chromosome (no Y-linked DNMs were 
reported), which resulted in 98,858 and 35,793 point mutations (or single nucleotide substitutions) for 
Jónsson et al (2017) and Goldmann et al (2016), respectively. Each of these mutations was then assigned 
into one of six mutation types (T>A, T>C, T>G, C>A, C>G, and C>T) based on the original allele 
present in homozygous state in both parents and the derived allele that is carried by the child in 
heterozygous state. Complementary combinations (such as C>T and G>A) were combined such that the 
original allele is always a pyrimidine (C or T). Moreover, each DNM was annotated to be in CpG or 
nonCpG context based on its two immediate flanking bases extracted from human reference genome. For 
analyses of C>T mutations at CpG sites, we excluded CpG transitions present in CpG islands (annotations 
downloaded from UCSC browser: CpG Islands track), because these sites are thought to be 
hypomethylated and thus behave differently in terms of mutation rate compared to CpG sites outside CGI 
(Moorjani et al. 2016). C>T mutations at CpG sites in CGIs were included in analysis of “all point 
mutations”. 
 
Estimation of sex-specific mutation parameters with a model-based approach 
Similar to Jónsson et al (2017), we modeled the expected number of mutations from a parent as a linear 
function of her (or his) age at conception of the child, and assumed that the observed maternal (paternal) 
mutation count follows a Poisson distribution with this expectation. One difference from the Jónsson et al 
(2017) model is in how we account for the incomplete parental origin information for the unphased 
DNMs. Unlike Jónsson et al., we explicitly modeled the phasing process as a binomial sampling of 
DNMs with a proband-specific phasing rate parameter, assuming that the phasing probabilities of all 
mutations in the same individual are identical and independent (as seems sensible). This approach enabled 
us to fully leverage information from both phased and unphased mutations jointly. 
 
Specifically, the increase in DNMs with sex-specific parental ages is modeled as the following: 
XM

i ~ Poisson(αM + βMGM
i), 

XP
i ~ Poisson(αP + βPGP

i), 
where index i indicates the proband; XM

i and XP
i are the total numbers of maternal and paternal mutations; 

GM
i and GP

i are ages of the mother and the father at conception, respectively; αM, βM, αP, and βP are the 
mutation parameters that characterize the sex-specific parental age effects and are shared across all 
probands (note that αM and αP are the extrapolated intercepts at age zero, which are not necessarily non-
negative). We assumed linear effects for both sexes in the initial model, but relaxed this assumption by 
testing for exponential effects for either or both sexes later (see “Test for alternative models for parental 
age effects” below; Table S3).  
 
Because of incomplete phasing, XM

i and XP
i are not directly observed. Thus, we modeled the observed 

mutation counts as: 
YM

i ~ Binomial(XM
i, pi), 

YP
i ~ Binomial(XP

i, pi), 
YU

i = (XM
i – YM

i) + (XP
i – YP

i), 
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where pi is the phasing rate in proband i and YM
i, YP

i and YU
i represent the numbers of phased maternal, 

phased paternal and unphased mutations, respectively. YM
i, YP

i and YU
i are defined as random variables, 

and we denote the observed values of these with lower case notations yM
i, yP

i and yU
i.  

 
With the parameterization above, the likelihood of the observed data for proband i can be written as: 
Li = P(YM

i = yM
i, YP

i = yP
i, YU

i = yU
i | αM, αP, βM, βP, GM

i, GP
i, pi) 

 = P(yM
i, yP

i, yU
i | XM

i, XP
i, pi)P(XM

i | αM, βM, GM
i)P(XP

i | αP, βP, GP
i) 

 = 𝑃 𝑦$%, 𝑦'%, 𝑦(% 	𝑋$% = 𝑥$%, 	𝑋'% = 𝑥'%, 𝑝%)𝑃(	𝑋$% = 𝑥$%|𝛼$, 𝛽$, 𝐺$%)𝑃(	𝑋'% =34
5 ,36

5 	

𝑥'%|𝛼', 𝛽', 𝐺'%) 
= [𝑃 𝑦$%, 𝑦'%, 𝑦(% 	𝑋$% = 𝑦$% + 𝑘, 	𝑋'% = 𝑦'% + 𝑦(% −

;<5
=>?

𝑘, 𝑝% ]𝑃 𝑦$% + 𝑘 𝛼$, 𝛽$, 𝐺$% 𝑃 𝑦'% + 𝑦(% − 𝑘 𝛼', 𝛽', 𝐺'% . 
We note that the likelihood function of Jónsson et al. (2017) does not include the first term, which is the 
probability of the observed data given possible partitionings of the unphased mutations into paternal and 
maternal origins (assuming the same phasing rates of maternal and paternal mutations). As an illustration, 
the set of observations (yM

i, yP
i, yU

i) = (10, 30, 80) is more probable under (xM
i, xP

i)=(30, 90), where one 
third of DNMs were phased for both parental origins, than under (xM

i, xP
i)=(80, 40), where 75% paternal 

DNMs were phased but only 12.5% of maternal DNMs. 
 
The likelihood function for proband i can be simplified as (see “Derivation of the likelihood function for 
estimating sex-specific mutation parameters” section later): 

𝐿% =
𝑝%(;4

5B;65)(1 − 𝑝%);<5

𝑦(%! 𝑦$%! 𝑦'%!
∙
𝛼$ + 𝛽$𝐺$%

;45

𝛼' + 𝛽'𝐺'%
;65 𝛼$ + 𝛽$𝐺$% + 𝛼' + 𝛽'𝐺'%

;<5

𝑒 G4BH4I45BG6BH6I65
. 

 
Note that the first term contains the phasing rate (pi) but is independent of the mutation parameters, 
whereas the second term is dependent on the mutation parameters but independent of pi. Therefore, the 
maximum likelihood estimator (MLE) of pi and those of the mutation parameters can be identified by 
maximizing the first and second terms separately.  
 
The log joint likelihood of all observed data under a set of mutation parameter values can be expressed as: 

𝐿𝐿 = 𝑙𝑜𝑔 𝐿% = log 𝐿%

Q

%>R

Q

%>R

 

= 𝐶 + [𝑦$% log 𝛼$ + 𝛽$𝐺$% + 𝑦'% log 𝛼' + 𝛽'𝐺'% + 𝑦(% log 𝛼$ + 𝛽$𝐺$% + 𝛼' + 𝛽'𝐺'% −Q
%>R

(𝛼$ + 𝛽$𝐺$% + 𝛼' + 𝛽'𝐺'%)],  
where C is a constant that is independent of the mutation parameters of interest. 
 
We implemented this log likelihood function in R and found the MLEs of the mutation parameters by 
using function mle2 in the package “bbmle” (with the optimization method “BFGS”; Bolker, R 
Development Core Team 2017). To avoid being trapped in local maxima, we tested a grid of initial values 
for the slopes (βP and βM). We performed the estimation for all point mutations altogether as well as for 
each mutation type separately. 
 
Derivation of the likelihood function for estimating sex-specific mutation parameters 
Following the parameter setup and assumptions specified in the Methods section, the likelihood of the 
observed data for proband i is: 
Li = P(YM

i = yM
i, YP

i = yP
i, YU

i = yU
i | αM, αP, βM, βP, GM

i, GP
i, pi) 
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   = P(yM
i, yP

i, yU
i | XM

i, XP
i, pi)P(XM

i | αM, βM, GM
i)P(XP

i | αP, βP, GP
i) 

= 𝑃 𝑦$%, 𝑦'%, 𝑦(% 	𝑋$% = 𝑦$% + 𝑘, 	𝑋'% = 𝑦'% + 𝑦(% −
;<5
=>?

𝑘, 𝑝% 𝑃 𝑦$% + 𝑘 𝛼$, 𝛽$, 𝐺$% 𝑃 𝑦'% + 𝑦(% − 𝑘 𝛼', 𝛽', 𝐺'%  
 
The first term of the addend can be expressed as: 
𝑃 𝑦$%, 𝑦'%, 𝑦(% 	𝑋$% = 𝑦$% + 𝑘, 	𝑋'% = 𝑦'% + 𝑦(% − 𝑘, 𝑝%  

= 𝑃 𝑦$% 	𝑋$% = 𝑦$% + 𝑘, 𝑝% 𝑃 𝑦'% 	𝑋'% = 𝑦'%+𝑦(% − 𝑘, 𝑝%

= 𝐵𝑖𝑛 𝑦$% 𝑦$% + 𝑘, 𝑝%)𝐵𝑖𝑛 𝑦'% 𝑦'% + 𝑦(% − 𝑘, 𝑝%) 

=
𝑦$% + 𝑘 !
𝑦$%! 𝑘!

(𝑝%);45(1 − 𝑝%)=
𝑦'% + 𝑦(% − 𝑘 !
𝑦'%! (𝑦(

% − 𝑘)!
(𝑝%);65(1 − 𝑝%)(;<

5W=) 

=
𝑝%(;4

5B;65)(1 − 𝑝%);<5

𝑦$%! 𝑦'
%!

1
𝑘! (𝑦(

% − 𝑘)!
𝑦$% + 𝑘 ! 𝑦'% + 𝑦(% − 𝑘 ! 

 
 
The second term of the addend is: 

𝑃 𝑦$% + 𝑘 𝛼$, 𝛽$, 𝐺$% = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑦$% + 𝑘 𝛼$ + 𝛽$𝐺$% =
(𝛼$ + 𝛽$𝐺$%);4

5B=𝑒W(G4BH4I4
5)

𝑦$% + 𝑘 !
 

 
Similarly, the third term of the addend is: 
𝑃 𝑦'% + 𝑦(% − 𝑘 𝛼', 𝛽', 𝐺'% = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑦'% + 𝑦(% − 𝑘 𝛼' + 𝛽'𝐺'%

=
(𝛼' + 𝛽'𝐺'%);6

5B;<5W=𝑒W(G6BH6I6
5)

𝑦'% + 𝑦(% − 𝑘 !
 

 
Therefore, the addend can be written together as: 

𝑝%(;4
5B;65)(1 − 𝑝%);<5

𝑦$%! 𝑦'
%!

1
𝑘! (𝑦(

% − 𝑘)!
𝑦$% + 𝑘 ! 𝑦'% + 𝑦(%

− 𝑘 !
(𝛼$ + 𝛽$𝐺$%);4

5B=𝑒W(G4BH4I4
5)

𝑦$% + 𝑘 !
(𝛼' + 𝛽'𝐺'%);6

5B;<5W=𝑒W(G6BH6I6
5)

𝑦'% + 𝑦(% − 𝑘 !
 

=Y
5(Z4

5[Z65)(RWY5)Z<5

;45!;6
5!

R
=!(;<

5W=)!
(𝛼$ + 𝛽$𝐺$%);4

5B=(𝛼' + 𝛽'𝐺'%);6
5B;<5W=𝑒W(G4BH4I4

5BG6BH6I65) 

 
If we re-organize it to isolate terms independent of k, the addend becomes: 

𝑝%(;4
5B;65)(1 − 𝑝%);<5(𝛼$ + 𝛽$𝐺$%);4

5(𝛼' + 𝛽'𝐺'%);6
5𝑒W(G4BH4I4

5BG6BH6I65)

𝑦$%! 𝑦'
%!

×
(𝛼$ + 𝛽$𝐺$%)=(𝛼' + 𝛽'𝐺'%);<

5W=

𝑘! (𝑦(
% − 𝑘)!

 

 
Given that the second term of the above resembles the binomial point mass function, and that: 

1 =
𝑦(%

𝑘! (𝑦(
% − 𝑘)!

;<5

=>?

(
𝛼$ + 𝛽$𝐺$%

𝛼$ + 𝛽$𝐺$% + 𝛼' + 𝛽'𝐺'%
)=(

𝛼' + 𝛽'𝐺'%

𝛼$ + 𝛽$𝐺$% + 𝛼' + 𝛽'𝐺'%
);<5W= 
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We obtain:  

(𝛼$ + 𝛽$𝐺$%)=(𝛼' + 𝛽'𝐺'%);<
5W=

𝑘! (𝑦(
% − 𝑘)!

=
(𝛼$ + 𝛽$𝐺$% + 𝛼' + 𝛽'𝐺'%);<

5

𝑦(%!

;<5

=>?

 

 
Therefore, the likelihood for proband i can be simplified to: 
 
𝐿%

=
𝑝%(;4

5B;65)(1 − 𝑝%);<5(𝛼$ + 𝛽$𝐺$%);4
5(𝛼' + 𝛽'𝐺'%);6

5𝑒W(G4BH4I4
5BG6BH6I65)

𝑦$%! 𝑦'
%!

(𝛼$ + 𝛽$𝐺$% + 𝛼' + 𝛽'𝐺'%);<
5

𝑦(%!
 

 
 
Confidence intervals of male-to-female mutation ratio at given parental ages 
To account for uncertainties in the DNM parameter estimates, we used a bootstrap approach, randomly 
re-sampling the probands with replacement 500 times, keeping the same total number of probands in each 
run. For each replicate, we obtained the MLEs of the DNM parameters as described above, predicted the 
numbers of paternal and maternal mutations at given ages, and calculated the male-to-female mutation 
ratio; the actual average ages at conception in the Icelandic dataset are 28.2 and 32.0 for mothers and 
fathers, respectively). Thus, each bootstrap provides one point estimate for each of the quantities of 
interest, and the approximate distribution for each quantity can be obtained by aggregating results from 
the 100 replicates. 
 
Test for alternative models for parental age effects 
In addition to the linear model described in the above, we also considered models with exponential 
parental age effects post-puberty for either or both sexes. Specifically, we modeled the exponential 
parental age effect as follows: 
XM

i ~ Poisson(aM + Exp[bM(GM
i-P)+cM]); 

XP
i ~ Poisson(aP + Exp[bP(GP

i-P)+cP]), 
where P=13 is the age of onset of puberty assumed for both sexes. We note that results are not sensitive to 
the choice of the value of P. Under this formulation, models with different values of P are mathematically 
equivalent to models with the same bP (or bM) value but different cP (or cM) values. Indeed, we confirmed 
the MLEs for bP and bM are the same for different P values (even for P=0). 
 
We obtained the MLEs and corresponding log likelihoods of all four models for all point mutations 
combined and for each mutation type separately, and used the Akaike information criterion (AIC) to 
compare the relative fits of different models (a smaller AIC indicates a better fit of the model). We took 
ΔAIC<-6 as the threshold for evidence for a significantly better fit (approximately 20-fold more probable). 
The models with exponential paternal age effect provide worse fits (∆AIC>0) for all mutation types. 
 
For all DNMs combined, models with exponential effects of maternal age or both parental ages provide 
significantly better fits but are not significantly different from each other (Table S3). As verification, we 
split the 1,548 trios into two groups with maternal age at conception over and under 27 years (the median 
maternal ages in the dataset), respectively, and fitted both with linear parental age effects. The estimate of 
the maternal age effect is greater for older mothers than for younger mothers (0.56 vs 0.24, 95% CI: 
[0.45,0.66] vs [0.12,0.38]), whereas the estimates of paternal age effect are similar for the two groups 
(1.41 vs 1.40, 95% CI: [1.31, 1.51] vs [1.29, 1.53]; Table S3). The improved fit by an exponential 
maternal age was no longer significant when excluding the 72 trios with maternal age above 40 (Table 
S5). We therefore considered the linear model fitted to trios with maternal ages under 40 years for 
analyses for all point mutations combined throughout the manuscript. The predictions based on linear 
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models fitted to all trios and trios with Gm under 40 show similar results: for instance, the estimated 
male-to-female mutation ratio at puberty (P=13) is 3.1 vs 3.3 (95% CI [2.8, 3.5] vs [3.0, 3.7]). 
 
Among all mutation types considered, C>G transversions are the only type for which the model with 
exponential maternal age effect provides a significantly better fit by the criterion of ΔAIC<-6 (Table S3). 
Therefore, in all analyses for C>G transversions (e.g., calculation of α), we used the estimates from the 
model with an exponential maternal age effect (and linear paternal age effect) fitted to all 1548 trios. For 
all DNMs combined, the model with an exponential maternal age effect also provides a significantly 
better fit than the linear model. Interestingly, considering all trios, even after C>G transversions (or C>G 
transversions and CpG transitions) are excluded, an exponential maternal age effect still provides a 
significantly better fit for other point mutations combined (ΔAIC<-9; Table S5), suggesting that the signal 
is not driven by C>G mutations alone. Again, this effect is no longer discernable when trios with maternal 
age above 40 are excluded (Table S4). 
 
Alternative hypotheses for maternal age effect on maternal mutation rate 
The accumulation of DNA lesions and damage-induced mutations in aging oocytes is not the only logical 
explanation for a maternal age effect, as there are two (non-mutually exclusive) hypotheses that could 
allow for a maternal age effect due to replication-driven mutations. 
  
Under hypothesis 1, all or most female germline DNMs arise from replication errors in mothers and 
therefore predate the formation of the primary oocytes, but there exists some mechanism by which 
oocytes with fewer replicative point mutations tend to be ovulated in earlier menstrual cycles. While this 
hypothesis is conjecture, evidence from mouse suggests that oogonia that enter meiosis earlier are 
ovulated earlier (Polani and Crolla 1991) and may experience fewer mitoses (Fulton et al. 2005). Given 
the roughly two-fold difference in maternal mutation rate between ages 17 and 40, this scenario would 
require oocytes of a 40-year-old mother to have experienced about two times the number of cell divisions 
of a 17-year-old mother—potentially more, depending on how mutagenic the first few cell divisions are 
compared to subsequent cell divisions (Lindsay et al. 2016; Harland et al. 2017). In this scenario, 
depending on unknown specifics of germ cell lineage relationships, older oocytes may not only 
accumulate more point mutations, but also share more mutations with other older oocytes. Thus, it is 
unclear if this hypothesis is consistent with the observation that the offspring of older mothers share a 
smaller fraction of maternal DNMs with their siblings (Jónsson, Sulem, Arnadottir, et al. 2017).  
 
Under hypothesis 2, mutations increase with maternal age because proteins or mRNA transcripts in the 
oocytes deteriorate with maternal age (or the oocyte or sperm accumulates mutagens with parental ages), 
such that the first few divisions after fertilization generate more post-zygotic mutations in older mothers. 
This scenario is plausible, as a human zygote relies on the protein/transcript reservoir of the oocyte until 
the 4-cell or 8-cell stage (Braude, Bolton, and Moore 1988; Dobson et al. 2004; Zhang et al. 2009). It 
predicts that the number of DNMs on the paternal chromosomes should also increase with maternal age. 
We detected such an effect in the 202 trios with almost all DNMs phased (see details in “Detection and 
estimation of a maternal age effect on paternal mutation rate” section below, and main text). This finding 
does not distinguish between replication-driven and damage-induced mutations, however, as it can also 
arise from the deterioration of maternal repair proteins responsible for correcting DNA lesions during the 
embryonic cleavage stage, i.e., from damage-induced mutations (see main text). This hypothesis further 
predicts that offspring of older mothers should share a smaller fraction of maternal DNMs, since a larger 
fraction will have arisen post fertilization and hence be child specific (Figure 4A,B), as observed (Jónsson, 
Sulem, Arnadottir, et al. 2017). 
 
Importantly, however, neither hypothesis 2 nor hypothesis 1 alone explains why the male-to-female 
mutation ratio is already high at puberty and remains stable with parental age beyond puberty (Fig 1, Fig 
2B) or why paternal mutations increase roughly proportionally to paternal age (Fig 2A) for mutations 
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other than C>G and CpG>TpG. Instead, at least two additional and very specific conditions would have 
to be met, involving balancing acts of the per cell division mutation rates and the numbers of cell 
divisions in multiple developmental stages (as well as the strength of maternal age effect on the paternal 
genome in the case hypothesis 2). In contrast, both the stable male-to-female mutation ratio and parental 
age effects can be explained if most mutations are induced by DNA damage and male and female 
germlines have distinct but roughly constant damage rates (per unit of time) throughout life. Thus, taken 
together, our observations suggest a role for hypothesis 2—a maternal age effect on early embryonic 
development—and a role for damage induced mutations in both sexes (see main text). 
  
Detection and estimation of maternal age effect on paternal mutation rate 
For analyses in this section, we focused on the 199 probands in which almost all DNMs were phased (>95% 
DNM phased). We first did a Poisson regression (with an identity link) of the count of paternal point 
mutations on both parental ages and found a significant effect of the maternal age (p= 0.035) and a slight 
but non-significant improvement in the fit compared to a model with paternal age only (∆AIC=-2.4; 
approximately 3.3-fold more probable); p-values and AIC obtained by glm() function in R (with option 
“family = poisson(link = "identity")”). In contrast, regressing the maternal mutation count on both 
parental ages does not provide any improvement in the fit compared to a model with maternal age alone 
(∆AIC=0.2). See Table S7 for estimated effect sizes by Poisson regression. 
 
Motivated by this finding, we re-estimated the mutation parameters by maximum likelihood under models 
including a maternal age effect on paternal mutations (i.e., “maternal-on-paternal effect”) of the same size 
(model 1) or a different size (model 2) than the maternal age effect on maternal mutations. Both models 
provide slight but insignificant improvements in fit compared to a model without a maternal age effect on 
paternal mutations (model 0) (Table S7), and the model with the same maternal effect on both maternal 
and paternal mutations gives the best fit based on AIC (∆AIC =-3.7; MLE of maternal age effect is 0.34 
mutations per year; Table S7). 
 
We then carried out two types of analyses conditional on paternal age. First, we performed “pairwise 
analysis”, in which we compared all pairs of trios with the same paternal age, GP, but different maternal 
ages, GM, (i.e., a “pairwise analysis”). In 619 such pairs, the child born to the older mother carries more 
paternal mutations than does the child with the younger mother in 319 cases, fewer in 280 cases, and the 
same number in 20 cases, and the difference in the number of paternal mutations is significantly 
associated with the difference in the maternal age (Kendall’s rank test tau=0.09, p= 0.0015). Because 
some of the pairs include the same probands and are thus not independent, we did a permutation test by 
swapping the maternal ages within paternal age bin and calculating the adjusted z-score of Kendall’s tau-
b statistic. 220 out of 10,000 permutations had statistics equal to or greater than that observed with in real 
data (corresponding to an empirical one-tailed p-value of 0.022). To estimate the effect size of maternal 
age, we ran weighted linear regression of the difference in paternal counts on the difference in maternal 
ages for each pair of trios with the same paternal age (with an intercept of zero), with the weight of each 
data point specified as the inverse of the paternal age, which is approximately proportional to the variance 
in the observed difference in paternal mutation counts (Table S7). Because the mutation counts are 
integers and do not follow a normal distribution, the standard errors are inaccurate. We also did similar 
pairwise analysis for (1) the difference in maternal mutation counts against the difference in GM, 
conditional on the same GP, (2) the difference in paternal mutation counts against the difference in GP, 
conditional on the same GM, and (3) the difference in maternal mutation counts against the difference in 
GP, conditional on the same GM (Table S7); significance levels were evaluated with permutation tests, as 
described above. 
 
To minimize the issue of non-independence among pairs of trios and to estimate the maternal age effect 
on paternal mutations, we also ran a “deviation analysis.” For each proband, we found all probands with 
the same GP and calculated the average number of paternal mutations and average maternal age for them. 
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Then we calculated the deviation of the number of paternal mutations for the proband of interest by 
subtracting the average from the number of his/her paternal mutations. We applied Kendall’s rank test on 
the two deviation values across probands and found a significant association (p= 0.020); p-values were 
confirmed with a permutation test swapping maternal ages among trios with the same paternal age. We 
also estimated the maternal age effect by weighted linear regression as described above. We then did the 
reciprocal analysis to evaluate the effect of paternal age on maternal mutations and found no significant 
signal (Table S7).  
 
One concern is that parental ages are assigned to integer bins in the Icelandic dataset, and there is 
potentially a subtle correlation between maternal and paternal ages even within a paternal age bin, in 
which case variation in paternal age counts caused by small GP variation may be mistakenly ascribed to 
an effect of GM. To address this concern, we simulated data of 202 trios with similar parental age structure 
but no maternal age effect on paternal DNMs, and asked how frequently analysis of simulated data based 
on binned parental ages would generate signals comparable to those observed in actual data. To mimic the 
distributions of maternal and paternal ages and the correlation between them in the actual dataset, we 
simulated an exact maternal age for each trio by adding a random variable that is uniform on (0,1) to the 
integer maternal age given in the dataset, and a corresponding exact paternal age taken from 2.70 + 
1.076GM + e, where e follows Normal(0, 4.5) (parameters obtained by ordinary linear regression on the 
binned parental ages in the dataset). We then simulated the paternal DNM count as a Poisson random 
variable with expectation of either 1.51GP+6.05 (as estimated by Jónsson et al. 2017) or 1.41GP+5.56 
(estimated by our maximum likelihood model) and ran Poisson regression or pairwise analysis on the 
mutation counts and integer parts of parental ages, as described above. The simulated data generated 
either a greater or equal maternal age effect on paternal mutations by Poisson regression or a more z-score 
of Kendall’s tau-b statistic as significant or more significant in about 3.5% of 10,000 replicates and both 
in ~0.7% (Table S8). 
 
Although C>A mutations only constitute 8% of all DNMs, for this mutation type, we found a significant 
effect of the maternal age (p= 0.020) and a slight improvement in the fit compared to a model with 
paternal age only (∆AIC=-3.05; approximately 4.6-fold more probable) by Poisson regression (with 
identity link) of the number of paternal mutations. More surprisingly, the point estimate of the maternal 
age effect on paternal genome (0.095; se=0.041) is even stronger than that of the paternal age (0.057, 
se=0.033) and also stronger than the effect of maternal age on maternal genome (0.024, se=0.0094 by 
Poisson regression of maternal mutations on maternal age). To test the significance of this finding, we 
used simulations to examine whether the observations of C>A can happen by chance, conditional on the 
maternal age effect on paternal mutations on overall DNMs. We focused on 199 trios with >95% DNMs 
phased and simulated data with two schemes (1) randomly subsampling 8.3% paternal DNMs as C>A 
mutations for each trio, and (2) shuffling the mutation type labels across all paternal DNMs of the 199 
trios. We then ran Poisson regression on the simulated paternal C>A mutation counts and found that in 
only 4.5% of the 20,000 replication, the model with maternal age would provide a better fit with ∆AIC<-3 
and a greater point estimate of maternal age effect than paternal age effect (Table S9). These results 
suggest that paternal C>A mutations are more strongly affected by maternal age compared to other DNMs. 
In addition, the fraction of C>A DNMs is higher in paternal mutations than in maternal ones (constituting 
8.3% paternal DNMs vs 6.2% maternal) (Jónsson, Sulem, Kehr, et al. 2017), potentially reflecting DNA 
oxidative stress in spermatogenesis and lack of a complete base excision repair pathway in spermatozoa 
(De Iuliis et al. 2009; Smith et al. 2013). We also noted that this mutation type is 15-20% under-
represented than expected from rare variants (present in 3-9 copies) in 7,509 non-Finish Europeans in the 
gnomAD dataset, after accounting for GC content and effect of GC-biased gene conversion (Gao, 
Moorjani and Przeworski, unpublished), which is consistent with an under-detection of early embryonic 
mutations by standard trio approach. 
 
Differences in mutation properties of trios with or without a third generation in Jónsson et al (2017) 
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Motivated by the significant maternal age effect on paternal mutations detected in 199 trios with >95% 
DNMs phased, we added such an effect in our maximum likelihood model for all 1548 trios but found no 
improvement in fit of the model (Table S10). We noted that all trios with >95% phasing rate were 
families with a third generation, whereas all trios without a third generation had low phasing rate (32% on 
average), based only on read tracing-based phasing. Applying the maximum likelihood model to all 225 
trios with a third generation (phasing rate >80%) still provided support for a maternal-on-paternal effect 
(Table S10), suggesting mutation properties differ between trios with or without a third generation. In fact, 
DNMs were identified in different ways in three-generation and two-generation families: a large fraction 
of DNM candidates in three-generation families were directly validated or invalidated by transmission to 
the next generation, whereas DNMs in two-generation families were inferred from a candidate pool by a 
generalized additive model trained on the true positive and false positive calls in the three-generation 
families. Therefore, error rates in DNM calling are likely to be higher for trios without a third generation 
and may blur the subtle signals of maternal-on-paternal effect, especially in the face of large sampling 
variance, low phasing rate and high correlation between maternal and paternal ages. The false discovery 
rate of this study was estimated to be 3%, and the false negative rate at least 4% (Jónsson, Sulem, Kehr, et 
al. 2017; Jónsson, Sulem, Arnadottir, et al. 2017). 
 
Consistent with this hypothesis, we observed substantial differences in the age and sex dependencies of 
DNMs between the two subsets of families (225 with a third generation and 1323 without) by maximum 
likelihood inference and Poisson regression of the total DNM count (Table S10). In principle, a Poisson 
regression of the total number of mutations on both parental ages should correctly assign a maternal-on-
paternal effect, if there exists one, to maternal age. Yet, applying this method separately to two-generation 
and three-generation families, we found that the GP slope is much higher in two generations families (1.47 
vs 1.17), and GM slope is much lower (0.32 vs 0.66). To assess the significance of these differences, we 
considered 1,000 random subsets of the two-generation families of the same size (225) and similar or 
higher correlation between GP and GM (Pearson’s R=0.84) as the three-generation families, and found that 
1.9% replicates produced estimates of GP slope lower than the estimate in three-generation families in 
Poisson regression of total DNM count (2.7% when subsampling with replacement), suggesting the 
differences in sex and age dependencies of mutation rate is significant between two-gen and three-
generation families. We found similar statistically significant differences considering C>A transversions 
only, despite the lower mutation counts (Table S11): while the difference in GP slope is not significant 
(p=0.17), the difference in GM slope is (p=0.015). Whether these differences between the two-generation 
and three-generation families are due to biological differences among individuals (Rahbari et al. 2016) or 
technical biases requires further investigation. Findings in three-generation families, however, strongly 
support a maternal age effect on paternal mutations, and suggest that previous estimates of the paternal 
age effect may have been soaking this effect, and should be corrected downwards. 
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Supplementary Tables 
 
Table S1 Estimated parental age effects based on the maximum likelihood model and comparison to 
estimates from Jónsson et al (2017). One important distinction between the two models is that, to take 
into account the incomplete parental origin information, we explicitly modeled the phasing process as a 
binomial sampling of DNMs with a proband-specific phasing rate parameter, assuming that the phasing 
probabilities of all mutations in the same individual are identical and independent. This approach enabled 
us to fully leverage information of phased and unphased mutations (see in “Estimation of sex-specific 
mutation parameters with a model-based approach” section for more information). 

Mutation type Method βP βM αP αM 
All point 
mutations 

MLE 1.41 0.39 5.50 2.04 
Jónsson et al (2017) 1.51 0.37 6.05 3.61 

C>A MLE 0.11 0.023 0.42 0.18 
Jónsson et al (2017) 0.10 0.040 0.73 0.25 

C>G* MLE 0.14 0.073 0.52 -0.92 
Jónsson et al (2017) 0.12 0.09 0.85 -0.80 

C>T at 
nonCpG sites 

MLE 0.29 0.095 2.76 1.12 
Jónsson et al (2017) 0.29 0.09 2.23 1.75 

C>T at CpG 
sites 
 

MLE (excluding sites 
in GC islands) 

0.25 0.038 0.75 1.22 

Jónsson et al (2017) 
(including sites in GC 
islands) 

0.24 0.04 0.71 1.71 

T>A MLE 0.085 0.030 0.73 0.032 
Jónsson et al (2017) 0.07 0.04 1.27 0.21 

T>C MLE 0.40 0.11 0.75 0.36 
Jónsson et al (2017) 0.39 0.12 0.41 0.83 

T>G MLE 0.13 0.024 -0.45 0.044 
Jónsson et al (2017) 0.12 0.03 0.14 0.21 

* A model with exponential maternal age effect and linear paternal age effect was used for downstream 
analyses (see Table S3 for the parameter estimates). 
 
Table S2 Summary statistics of the two DNM data sets  

 
Goldmann Jónsson 

Number of trios 816 1548 
Average number of DNMs per proband 43.86 63.86 
% DNMs phased  
(% by informative flanking variant in the read) 

20.2% 
(20.2%) 

41.5% 
(31.6%) 

Estimated number of callable base pairs 1.62Gb1 2.68G 
Average paternal age 33.65 32.02 
Average maternal age 31.51 28.18 
Correlation between parental ages (Pearson’s R) 0.72 0.78 
Estimated paternal age effect (slope) for all DNMs 0.92 1.41 
Estimated maternal age effect (slope) for all DNMs 0.24 0.39 
Ratio of paternal to maternal slope 3.78 3.58 
%increase in DNM for one year increase in 
reproductive age in both sexes 2.64% 2.83% 
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1 Estimated in the study of Wong et al. (2016), which included 693 of the 816 trios in Goldmann et al. 
(2016). 
 
Table S3 Comparison of models with linear and exponential parental age effects (see accompanying 
excel spreadsheet). We took ΔAIC=-6 as the threshold for evidence of a significant better fit 
(approximately 20-fold more probable). 
 
Table S4 Comparison of linear models fitted to trios with different maternal ages (see accompanying 
excel spreadsheets) 
 
Table S5 Comparison of models with linear and exponential parental age effects fitted to all trios and 
trios with maternal age below 40 (see accompanying excel spreadsheets) 
 
Table S6 Co-occurrence of de novo C>Gs and indels on the same chromosome. Shown in the table are 
the numbers of C>G and other point mutations that co-occur with an indel on the same chromosome in 
the same individual. Conditional on occurrence on the same chromosome and within 10Mb, C>Gs are 
also closer to deletions ≥5bp than are other mutation types. See Fig S6 for a comparison between C>G 
and other point mutations in the distance to the closest deletions of ≥5bp conditional on co-occurrence. 
Indels can arise from non-homologous end joining (NHEJ) or microhomology mediated end joining 
(MMEJ) repair of DSBs and polymerase slippage during replication, but the former mechanism is more 
likely to lead to deletions of intermediate size (Montgomery et al. 2013; Kloosterman et al. 2015), so the 
highly significant association of C>G DNMs with deletions greater than 4bp points to DSBs as the main 
source of both. 
  Co-occurrence 

with a 
deletion≥5bp 
(p < 2.2e-16) 

Co-occurrence 
with a 
deletion<5bp 
(p = 0.702) 

Co-occurrence 
with an 
insertion≥5bp 
(p = 0.168) 

Co-occurrence 
with an 
insertion<5bp 
(p = 0.0554) 

 Total 
number 

Number Prob. Number Prob. Number Prob. Number Prob. 

C>G 9467 321 0.0339 1441 0.152 91 0.00961 656 0.0693 
Non-
C>G 
point 
mutations 

89391 2529 0.0283 13745 0.154 733 0.00820 5734 0.0641 

P-values were calculated based on Chi-square test for independence between (C>G vs. not) and (co-
occurrence with an indel vs. not). 
 
Table S7 Estimates of maternal age effect on paternal mutations by different methods 
Poisson regression (with identity link) 
Response 
variable 

Explanatory 
variable (s) 

Slope 
of GP 

SE of 
slope of 
GP 

p-value of 
slope of 
GP 

Slope 
of GM 

SE of 
slope of 
GM 

p-value of 
slope of 
GM 

AIC 

Paternal 
mutation 
count 

Gp, GM 1.16 0.12 < 2e-16 0.30 0.14 0.035 1419.5 

Paternal 
mutation 
count 

GP 1.37 0.062 < 2e-16 -- -- -- 1422.0 

Maternal 
mutation 

GP, GM -0.075 0.055 0.17 0.42 0.069 1.13e-09 1141.2 
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count 
Maternal 
mutation 
count 

GM -- -- -- 0.34 0.038 < 2e-16 1141.0 

	
Maximum likelihood approach 

Model βP βM αP αM βMp
* Log 

likelihood AIC 

Model 0: 
Paternal mutation count ~ Pois(αP + βPGP) 
Maternal mutation count ~ Pois(αM + βMGM) 

1.39 0.34 8.33 3.18 -- -1435.4 2878.8 

Model 1: 
Paternal mutation count ~ 
Pois(αP+βPGP+βMGM) 
Maternal mutation count ~ Pois(αM + βMGM) 

1.16 0.34 6.24 3.29 -- -1433.5 2875.1 

Model 2: 
Paternal mutation count ~ 
Pois(αP+βPGP+βMpGM) 
Maternal mutation count ~ Pois(αM + βMGM) 

1.20 0.34 6.60 3.20 0.29 -1433.5 2876.9 

* βMp represents the effect of maternal age on paternal DNMs, when it is different than that on maternal 
mutations 
 
Pairwise analysis (weighted linear regression, intercept forced to zero) 
Condition Response 

variable 
Explanatory 
variable (s) 

Weight Slope  SE of 
slope+ 

P-value 
of 
slope+ 

One-tailed p-
value by 
permutation 

Same GP Difference in 
paternal 
mutation 
counts 

GM 1/GP 0.37 0.093 6.52e-
05 

0.022 

Same GP Difference in 
maternal 
mutation 
counts 

GM 1/(GM1+ 
GM2)* 

0.38 0.047 1.69e-
15 

0.0033 

Same GM Difference in 
paternal 
mutation 
counts 

GP 1/(GP1+ 
GP2)* 

1.01 0.069 <2e-16 <1e-4 

Same GM Difference in 
maternal 
mutation 
counts 

GP 1/GM -
0.019 

0.033 0.57 0.31 

* GM1 and GM2 are the maternal ages of the two probands in the pair with the same paternal age; similar 
for GP1 and GP2. 
+ Note that the standard errors and p-values may be unreliable due to violation of the linear regression 
assumptions. 
 
Deviation analysis (weighted linear regression, intercept forced to zero) 
Condition Response 

variable 
Explanatory 
variable (s) 

Weight Slope  SE of 
slope+ 

p-value of 
slope+ 

P-value by 
permutation 
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Same GP Deviation in 
paternal 
mutation count 

Deviation 
in GM 

1/GP 0.38 0.17 0.025 0.018 

Same GM Difference in 
maternal 
mutation counts 

Deviation 
in GP 

1/GM -0.10 0.065 0.13 0.088 

+ Note that the standard errors and p-values may be unreliable due to violation of the linear regression 
assumptions. 
 
Table S8 Estimating the probability of a spurious maternal age effect on paternal mutations 

Paternal mutations* Parental ages 
for analysis 

Number of 
replicates 

Poisson regression: 
∆AIC<-2.4 & 
maternal slope>0.3  

Pairwise analysis:  
z-score of tau-
b>3.1 

Both 

Poisson(1.51GP’+6.05)  
Integer part 
of simulated 
ages 

10000 208 220 67 

Poisson(1.41GP’+5.56) 
Integer part 
of simulated 
ages 

10000 183 169 47 

* GP’ is the exact paternal age used in simulations 
 
Table S9 Estimating the probability of a stronger maternal age effect on paternal C>A mutations than 
paternal age effect 

Simulation scheme Number of 
replicates ∆AIC<-3  ∆AIC<-3 &  

GM slope > GP slope Rate 

Subsample 8.3% paternal 
DNMs as C>A for each trio 20,000 926 900 4.50% 
Shuffle of mutation type labels 
across all paternal DNMs 20,000 935 897 4.49% 

	
Table S10 Differences in the age and sex dependencies of DNMs between the trios with or without a 
third generation 
Poisson regression (with identity link) of total DNM count on GM and GP 
 # 

Trios 
GP slope 
(SE) 

P-value 
of GP  

GM slope 
(SE) 

P-value of 
GM  

Intercept  
(SE) 

Ratio of point 
estimates of two 
slopes 

Decode all 1548 1.44 
(0.040) 

< 2e-16 0.35 
(0.052) 

1.53e-11 7.89  
(0.88) 

4.11 

225 3-gen trios 225 1.17  
(0.12) 

< 2e-16 0.66 
(0.15) 

1.53e-05 9.98  
(2.30) 

1.78 

1323 2-gen 
trios 

1323 1.47 
(0.042) 

< 2e-16 0.32 
(0.055) 

5.16e-09 7.45  
(0.96) 

4.53 

	
Maximum likelihood inference 

 
Model βP βM αP αM βMp 

Log 
likelihood AIC 

All 1548 
trios 

No maternal-on-
paternal effect 1.41 0.39 5.50 2.04 -- -12174.3 24356.6 
With maternal-on-
paternal effect 1.41 0.39 5.50 2.04 0.00 -12174.3 24358.6 
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225 3-gen 
trios 

No maternal-on-paternal 
effect 1.40 0.33 7.95 3.54 -- -1634.1 3276.1 
With maternal-on-
paternal effect 1.22 0.33 6.37 3.55 0.26 -1632.2 3274.5 

1323 2-gen 
trios 

No maternal-on-
paternal effect 1.41 0.42 5.08 1.63 -- -10524.4 21056.8 
With maternal-on-
paternal effect 1.41 0.41 5.08 1.76 0.00 -10524.4 21058.8 

Bold font indicates the model with a better fit. 
 
Table S11 Differences in the age and sex dependencies of C>A DNMs between the trios with or without 
a third generation 
Poisson regression (with identity link) of total DNM count on GM and GP 
 # 

Trios 
GP slope 
(SE) 

P-value 
of GP  

GM slope 
(SE) 

P-value 
of GM  

Intercept  
(SE) 

Ratio of point 
estimates of two 
slopes 

Decode all 1548 0.10 
(0.011) 

< 2e-16 0.039 
(0.014) 

0.0059 0.48  
(0.24) 

2.62 

225 3-gen trios 225 0.080 
(0.035) 

0.021 0.10 
(0.043) 

0.014 -0.29 
(0.64) 

0.77 

1323 2-gen 
trios 

1323 0.11  
(0.012) 

< 2e-16 0.031 
(0.015) 

0.042 0.60  
(0.26) 

3.39 

	
Maximum likelihood inference 

 
Model βP βM αP αM βMp 

Log 
likelihood AIC 

All 1548 
trios 

No maternal-on-paternal 
effect 0.11 0.023 0.42 0.18 -- -5334.4 10676.8 
With maternal-on-paternal 
effect 0.10 0.022 0.26 0.21 0.018 -5333.6 10677.1 

225 3-gen 
trios 

No maternal-on-paternal 
effect 0.14 0.023 

-
0.04 0.16 -- -764.5 1537.1 

With maternal-on-paternal 
effect 0.083 0.023 

-
0.45 0.15 0.079 -762.7 1535.3 

1323 2-gen 
trios 

No maternal-on-paternal 
effect 0.11 0.024 0.48 0.18 -- -4565.9 9139.7 
With maternal-on-paternal 
effect 0.11 0.023 0.39 0.21 0.009 -4565.7 9141.4 

Bold font indicates the model with a better fit. 
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Supplementary Figures 

 

Figure S1. Fraction of paternal mutations among phased mutations as a function of paternal age. 
Each point represents the data for one child (proband) in the Icelandic data set (Jónsson et al. 
2017) with at least three phased mutations under the corresponding category. The blue line is the 
LOESS curve fitted to the scatterplot, with the shaded area representing the 95% confidence 
interval of the LOESS curve (calculated with the geom_smooth function in R). (A) For all 
probands (children) with at least three phased point mutations; (B) For probands with similar 
parental ages (0.9<GP/GM<1.1) and at least three non-C>G phased DNMs; (C) For probands with 
similar parental ages (0.9< GP/GM<1.1) and at least three DNMs that are not C>G or CpG>TpG. 
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Figure S2. Replication of the stable fraction of paternal mutations with paternal age in an 
independent dataset. Each point represents the data for one child (proband) with at least three 
phased point mutations and similar parental ages (paternal-to-maternal age ratio between 0.9 to 
1.1; 719 trios total). The blue line is the LOESS curve fitted to the scatterplot, with the shaded 
area representing the 95% confidence interval of the LOESS curve. (A) Same as Figure 1; (B) 
Similar plot for data from Goldmann et al. (2016), which includes a total of 35,793 DNMs (7,216 
of which were phased). See SOM for details. 
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Figure S3. Fraction of paternal mutations among phased mutations for different ratios of 
paternal age (GP) to maternal age (GM). Each point represents the data for one child (proband) 
with at least three phased point mutations that are not C>G or CpG>TpG in the Icelandic data set 
(Jónsson et al. 2017). The blue line is the LOESS curve fitted to the scatterplot, with the shaded 
area representing the 95% confidence interval of the LOESS curve. The red dashed line is the 
prediction based on estimated parental age effects on mutation rate from our maximum 
likelihood model. (A) Data for probands with 0.8<GP/GM<1 versus prediction for GP/GM=0.9; (B) 
Data for probands with 0.9<GP/GM<1.1 versus prediction for GP/GM=1; (C) Data for probands 
with 1.1<GP/GM<1.3 versus prediction for GP/GM=1.2; (D) Data for probands with 
1.3<GP/GM<1.5 versus prediction for GP/GM=1.4. 
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Figure S4. Comparison of parental age effects and predicted male-to-female mutation ratio at 
given ages estimated from two DNM datasets. The two data sets differ in their sample sizes 
(1548 vs 816 trios), average numbers of detected DNMs per proband (63.86 vs 43.86) and the 
fraction of DNMs that were phased (41.5% vs 20.2%), which lead to different absolute effects of 
parental ages on the count of DNMs (A). Despite all these differences, the male-to-female 
mutation ratio is inferred to be stable with paternal age for both data sets. (A) Estimated sex-
specific mutation rates with paternal age; (B) Predicted male-to-female mutation ratio. 
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Figure S5. Estimated sex-specific mutation rates and male-to-female mutation ratio as a function 
of parental ages, by mutation type. Red boxes indicate the two mutation types highlighted in the 
main text. The extent of male mutational bias and average yearly mutation rate are estimated 
assuming the same paternal and maternal age. “Other point mutations” refers to point mutations 
excluding C>G and CpG>TpG mutations. (A) Estimated paternal and maternal mutation rates 
per generation; (B) Estimated male-to-female mutation ratio; (C) Estimated average yearly 
mutation rates. 
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Figure S6. Distribution of distances to the closest deletion of ≥5bp for C>G mutations. 
Cumulative distribution of distance to the closest de novo deletion (≥ 5bp) for C>G transversions 
and for other point mutations, conditional on co-occurrence within 10Mb.  
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Figure S7. Effect of maternal age on the number of paternal DNMs by deviation analysis. Each 
point represents one proband (in which almost all mutations phased). The blue (or red) line is the 
weighted linear regression line (see SOM for details), with the shaded area representing the 95% 
confidence interval of the slope.  
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