Skip to main content

Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component

  • Chapter
  • First Online:
Biofuels

Abstract

Metabolic engineering of Saccharomyces cerevisiae for ethanol production from d-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment d-xylose, the keto-isomer d-xylulose can be metabolised slowly. Conversion of d-xylose into d-xylulose is therefore crucial in metabolic engineering of xylose fermentation by S. cerevisiae. Expression of heterologous xylose reductase and xylitol dehydrogenase does enable d-xylose utilisation, but intrinsic redox constraints of this pathway result in undesirable byproduct formation in the absence of oxygen. In contrast, expression of xylose isomerase (XI, EC 5.3.1.5), which directly interconverts d-xylose and d-xylulose, does not have these constraints. However, several problems with the functional expression of various bacterial and Archaeal XI genes have precluded successful use of XI in yeast metabolic engineering. This changed with the discovery of a fungal XI gene in Piromyces sp. E2, expression of which led to high XI activities in S. cerevisiae. When combined with over-expression of the genes of the non-oxidative pentose phosphate pathway of S. cerevisiae, the resulting strain grew anaerobically on d-xylose with a doubling time of ca. 8 h, with the same ethanol yield as on glucose. Additional evolutionary engineering was used to improve the fermentation kinetics of mixed-substrate utilisation, resulting in efficient d-xylose utilisation in synthetic media. Although industrial pilot experiments have already demonstrated high ethanol yields from the d-xylose present in plant biomass hydrolysates, strain robustness, especially with respect to tolerance to inhibitors present in hydrolysates, can still be further improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amore R, Wilhelm M, Hollenberg CP (1989) Appl Microbiol Biotechnol 30:351

    Article  CAS  Google Scholar 

  2. Andreasen AA, Stier TJB (1953) J Cell Comp Physiol 41:23

    Article  CAS  Google Scholar 

  3. Andreasen AA, Stier TJB (1954) J Cell Comp Physiol 43:271

    Article  CAS  Google Scholar 

  4. Asboth B, Naray-Szabo G (2000) Curr Protein Pept Sci 1:237

    Article  CAS  Google Scholar 

  5. Attfield PV, Bell PJL (2006) FEMS Yeast Res 6:862

    Article  CAS  Google Scholar 

  6. Bailey JE (1991) Science 252:1668

    Article  CAS  Google Scholar 

  7. Barnett JA, Payne RW, Yarrow D (1990) Yeasts; characteristics and identification, 2 edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  8. Batt CA, Carvallo S, Easson DD, Akedo M, Sinskey AJ (1986) Biotechnol Bioeng 27:549

    Article  Google Scholar 

  9. Becker J, Boles E (2003) Appl Environ Microbiol 69:4144

    Article  CAS  Google Scholar 

  10. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) Nucleic Acids Res 34:16

    Article  CAS  Google Scholar 

  11. Bhosale SH, Rao MB, Deshpande VV (1996) Microbiol Rev 60:280

    CAS  Google Scholar 

  12. Blow DM, Collyer CA, Goldberg JD, Smart OS (1992) Faraday Discuss 93:67

    Article  CAS  Google Scholar 

  13. Briggs KA, Lancashire WE, Hartley BS (1984) EMBO J 3:611

    CAS  Google Scholar 

  14. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) Eur J Appl Microbiol Biotechnol 18:287

    Article  CAS  Google Scholar 

  15. Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) Appl Microbiol Biotechnol 19:256

    Article  CAS  Google Scholar 

  16. Bruinenberg PM, van Dijken JP, Scheffers WA (1983) J Gen Microbiol 129:965

    CAS  Google Scholar 

  17. Dien BS, Cotta MA, Jeffries TW (2003) Appl Microbiol Biotechnol 63:258

    Article  CAS  Google Scholar 

  18. Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF (2005) Genome Biol 6:R77

    Article  CAS  Google Scholar 

  19. Galbe M, Zacchi G (2002) Appl Microbiol Biotechnol 59:618

    Article  CAS  Google Scholar 

  20. Garcia-Vallve S, Romeu A, Palau J (2000) Mol Biol Evol 17:352

    CAS  Google Scholar 

  21. Gárdonyi M, Hahn-Hägerdal B (2003) Enzyme Microb Technol 32:252

    Article  Google Scholar 

  22. Gárdonyi M, Jeppsson M, Lidén G, Gorwa-Grauslund MF, Hahn-Hägerdal B (2003) Biotechnol Bioeng 82:818

    Article  CAS  Google Scholar 

  23. Goodenough PW (1995) Mol Biotechnol 4:151

    Article  CAS  Google Scholar 

  24. Grohmann K, Bothast RJ (1994) Pectin-rich residues generated by processing of citrus fruits, apples, and sugar beets: enzymatic hydrolysis and biological conversion to value-added products. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production, Chap 19. Oxford University Press, New York, p 372

    Chapter  Google Scholar 

  25. Gunsalus IC, Horecker BL, Wood WA (1955) Bacteriol Rev 19:79

    CAS  Google Scholar 

  26. Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl WH, Cordero Otero RR, Johnsson LJ (2001) Adv Biochem Eng Biotechnol 73:53

    Google Scholar 

  27. Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Microbiology 148:2783

    CAS  Google Scholar 

  28. Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WTAM, van Dijken JP, Jetten MSM, Pronk JT, op den Camp HJM (2003) Arch Microbiol 180:134

    Article  CAS  Google Scholar 

  29. Ho NWY, Chen Z, Brainard AP (1998) Appl Environ Microbiol 64:1852

    CAS  Google Scholar 

  30. Hsiao HY, Chiang LC, Chen LF, Tsao GT (1982) Enzym Microb Technol 4:25

    Article  Google Scholar 

  31. Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Biotechnol Prog 15:855

    Article  CAS  Google Scholar 

  32. Jeffries TW, Jin YS (2004) Appl Microbiol Biotechnol 63:495

    Article  CAS  Google Scholar 

  33. Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Appl Environ Microbiol 68:1604

    Article  CAS  Google Scholar 

  34. Johansson B, Hahn-Hägerdal B (2002) FEMS Yeast Res 2:277

    CAS  Google Scholar 

  35. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Yeast 22:359

    Article  CAS  Google Scholar 

  36. Karhumaa K, Wiedemann B, Hahn-Hägerdal B, Boles E, Gorwa-Grauslund MF (2006) Microb Cell Fact 5:R18

    Article  CAS  Google Scholar 

  37. Klinke HB, Thomsen AB, Ahring BK (2004) Appl Microbiol Biotechnol 66:10

    Article  CAS  Google Scholar 

  38. Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Curr Genet 18:493

    Article  Google Scholar 

  39. Kötter P, Ciriacy M (1993) Appl Microbiol Biotechnol 38:776

    Article  Google Scholar 

  40. Kovarova-Kovar K, Egli T (1998) Microbiol Mol Biol Rev 62:646

    CAS  Google Scholar 

  41. Kumar S, Tamura K, Nei M (2004) Brief Bioinform 5:150

    Article  CAS  Google Scholar 

  42. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, de Laat WTAM, den Ridder JJJ, op den Camp HJM, van Dijken JP, Pronk JT (2003) FEMS Yeast Res 4:69

    Article  CAS  Google Scholar 

  43. Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:399

    Article  CAS  Google Scholar 

  44. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:925

    Article  CAS  Google Scholar 

  45. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) FEMS Yeast Res 4:655

    Article  CAS  Google Scholar 

  46. Lee J (1997) J Biotechnol 56:1

    Article  CAS  Google Scholar 

  47. Lonn A, Gárdonyi M, van Zyl WH, Hahn-Hägerdal B, Otero RC (2002) Eur J Biochem 269:157

    Article  CAS  Google Scholar 

  48. Moes CJ, Pretorius IS, van Zyl WH (1996) Biotechnol Lett 18:269

    Article  CAS  Google Scholar 

  49. Mussatto SI, Roberto IC (2004) Bioresour Technol 93:1

    Article  CAS  Google Scholar 

  50. Niederberger P, Prasad R, Miozarri G, Kacser H (1992) Biochem J 287:473

    CAS  Google Scholar 

  51. Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC (2001) Yeast 18:19

    Article  CAS  Google Scholar 

  52. Novick A, Szilard L (1950) Science 112:715

    Article  CAS  Google Scholar 

  53. Novick A, Szilard L (1950) Proc Natl Acad Sci USA 36:708

    Article  CAS  Google Scholar 

  54. Palmqvist E, Hahn-Hägerdal B (2000) Bioresour Technol 74:25

    Article  CAS  Google Scholar 

  55. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) Biochem J 385:75

    Article  CAS  Google Scholar 

  56. Richard P, Toivari MH, Penttilä M (2000) FEMS Microbiol Lett 190:39

    Article  CAS  Google Scholar 

  57. Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (1998) FEMS Microbiol Lett 162:155

    Article  CAS  Google Scholar 

  58. Rutgers M, Teixeira de Mattos JM, Postma PW, van Dam K (1987) J Gen Microbiol 133:445

    CAS  Google Scholar 

  59. Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Appl Environ Microbiol 53:1996

    CAS  Google Scholar 

  60. Sauer U (2001) Adv Biochem Eng Biotechnol 73:129

    CAS  Google Scholar 

  61. Schomburg I, Chang A, Ebeling C, Heldt C, Huhn G, Schomburg D (2004) Nucleic Acids Res 32:431

    Article  CAS  Google Scholar 

  62. Sedlak M, Ho NWY (2004) Yeast 21:671

    Article  CAS  Google Scholar 

  63. Sonderegger M, Sauer U (2003) Appl Environ Microbiol 69:1990

    Article  CAS  Google Scholar 

  64. Toivari MH, Salusjarvi L, Ruohonen L, Penttilä M (2004) Appl Environ Microbiol 70:3681

    Article  CAS  Google Scholar 

  65. Toivola A, Yarrow D, Van den Bosch E, van Dijken JP, Scheffers WA (1984) Appl Environ Microbiol 47:1221

    CAS  Google Scholar 

  66. Traff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Appl Environ Microbiol 67:5668

    Article  CAS  Google Scholar 

  67. van Dijken JP, Scheffers WA (1986) FEMS Microbiol Rev 32:199

    Google Scholar 

  68. van Hoek P, van Dijken JP, Pronk JT (2000) Enzyme Microb Technol 26:724

    Article  Google Scholar 

  69. van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Antonie van Leeuwenhoek 60:391

    Article  CAS  Google Scholar 

  70. Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hägerdal B (1996) Appl Environ Microbiol 62:4648

    CAS  Google Scholar 

  71. Wang PY, Schneider H (1980) Can J Microbiol 26:1165

    Article  CAS  Google Scholar 

  72. Weikert C, Sauer U, Bailey JE (1997) Microbiology 143:1567

    Article  CAS  Google Scholar 

  73. Wiebe MG, Robson GD, Oliver SG, Trinci AP (1994) Microbiology 140:3023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack T. Pronk .

Editor information

Lisbeth Olsson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Maris, A.J.A., Winkler, A.A., Kuyper, M., de Laat, W.T.A.M., van Dijken, J.P., Pronk, J.T. (2007). Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component. In: Olsson, L. (eds) Biofuels. Advances in Biochemical Engineering/Biotechnology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2007_057

Download citation

Publish with us

Policies and ethics