Skip to main content

Synthetic Biology of Polyhydroxyalkanoates (PHA)

  • Chapter
  • First Online:
Book cover Synthetic Biology – Metabolic Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 162))

Abstract

Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol 41:77–93

    CAS  Google Scholar 

  2. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  Google Scholar 

  3. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13:142–150

    CAS  Google Scholar 

  4. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  Google Scholar 

  5. Gao X, Chen JC, Wu Q, Chen GQ (2011) Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr Opin Biotechnol 22:768–774

    Article  CAS  Google Scholar 

  6. Volova TG, Gladyshev MI, Trusova MY, Zhila NO (2006) Degradation of polyhydroxyalkanoates and the composition of microbial destructors under natural conditions. Microbiology 75:593–598

    Article  CAS  Google Scholar 

  7. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  Google Scholar 

  8. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  9. Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ (2014) Engineering the diversity of polyesters. Curr Opin Biotechnol 29:24–33

    Article  CAS  Google Scholar 

  10. Pederson EN, McChalicher CW, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7:1904–1911

    Article  CAS  Google Scholar 

  11. Meng DC, Shi ZY, Wu LP, Zhou Q, Wu Q, Chen JC, Chen GQ (2012) Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab Eng 14:317–324

    Article  CAS  Google Scholar 

  12. Doi Y (1989) Production, properties, and biodegradation of microbial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate. Abstr Pap Am Chem S 197:45-Btec

    Google Scholar 

  13. Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782

    CAS  Google Scholar 

  14. Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35:573–579

    Article  CAS  Google Scholar 

  15. Fiedler S, Steinbuchel A, Rehm BH (2002) The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160

    Article  CAS  Google Scholar 

  16. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    CAS  Google Scholar 

  17. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632

    Article  CAS  Google Scholar 

  18. Li ZJ, Shi ZY, Jian J, Guo YY, Wu Q, Chen GQ (2010) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12:352–359

    Article  CAS  Google Scholar 

  19. Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099

    Article  CAS  Google Scholar 

  20. Tyo KE, Kocharin K, Nielsen J (2010) Toward design-based engineering of industrial microbes. Curr Opin Microbiol 13:255–262

    Article  CAS  Google Scholar 

  21. Kichise T, Fukui T, Yoshida Y, Doi Y (1999) Biosynthesis of polyhydroxyalkanoates (PHA) by recombinant Ralstonia eutropha and effects of PHA synthase activity on in vivo PHA biosynthesis. Int J Biol Macromol 25:69–77

    Article  CAS  Google Scholar 

  22. Lee SY, Wong HH, Choi JI, Lee SH, Lee SC, Han CS (2000) Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol Bioeng 68:466–470

    Article  CAS  Google Scholar 

  23. Tan IKP, Kumar KS, Theanmalar M, Gan SN, Gordon B (1997) Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl Microbiol Biotechnol 47:207–211

    Article  CAS  Google Scholar 

  24. Hyakutake M, Saito Y, Tomizawa S, Mizuno K, Tsuge T (2011) Polyhydroxyalkanoate (PHA) synthesis by class IV PHA synthases employing Ralstonia eutropha PHB-4 as host strain. Biosci Biotechnol Biochem 75:1615–1617

    Article  CAS  Google Scholar 

  25. Rehm BHA, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  CAS  Google Scholar 

  26. Yuan W, Jia Y, Tian J, Snell KD, Muh U, Sinskey AJ, Lambalot RH, Walsh CT, Stubbe J (2001) Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies. Arch Biochem Biophys 394:87–98

    Article  CAS  Google Scholar 

  27. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  28. Andreessen B, Lange AB, Robenek H, Steinbüchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626

    Article  CAS  Google Scholar 

  29. Zhou Q, Shi ZY, Meng DC, Wu Q, Chen JC, Chen GQ (2011) Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab Eng 13:777–785

    Article  CAS  Google Scholar 

  30. Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436

    Article  CAS  Google Scholar 

  31. Steinbüchel A, Valentin H, Schönebaum A (1994) Application of recombinant gene technology for production of polyhydroxyalkanoic acids: biosynthesis of poly(4-hydroxybutyric acid) homopolyester. J Environ Polym Degrad 2:67–74

    Article  Google Scholar 

  32. Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP, Chen JC, Chen GQ (2012) Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact 11:54

    Article  CAS  Google Scholar 

  33. Steinbüchel A, Debzi E-M, Marchessault R, Timm A (1993) Synthesis and production of poly(3-hydroxyvaleric acid) homopolyester by Chromobacterium violaceum. Appl Microbiol Biotechnol 39:443–449

    Article  Google Scholar 

  34. Meng DC, Wang Y, Wu LP, Shen R, Chen JC, Wu Q, Chen GQ (2015) Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 29:189–195

    Article  CAS  Google Scholar 

  35. Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13:11–17

    Article  CAS  Google Scholar 

  36. Chen JY, Song G, Chen GQ (2006) A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Anton Leeuw Int J G 89:157–167

    Article  CAS  Google Scholar 

  37. Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27:1405–1410

    Article  CAS  Google Scholar 

  38. Gao X, Yuan XX, Shi ZY, Guo YY, Shen XW, Chen JC, Wu Q, Chen GQ (2012) Production of copolyesters of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by E. coli containing an optimized PHA synthase gene. Microb Cell Fact 11:130

    Article  CAS  Google Scholar 

  39. Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954

    CAS  Google Scholar 

  40. Klinke S, Ren Q, Witholt B, Kessler B (1999) Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65:540–548

    CAS  Google Scholar 

  41. Verwoert II, Verbree EC, van der Linden KH, Nijkamp HJ, Stuitje AR (1992) Cloning, nucleotide sequence, and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J Bacteriol 174:2851–2857

    Article  CAS  Google Scholar 

  42. Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Article  CAS  Google Scholar 

  43. Zou XH, Chen GQ (2007) Metabolic engineering for microbial production and applications of copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Macromol Biosci 7:174–182

    Article  CAS  Google Scholar 

  44. Wallen LL, Rohwedde WK (1974) Poly-beta-hydroxyalkanoate from activated-sludge. Environ Sci Technol 8:576–579

    Article  CAS  Google Scholar 

  45. Li SJ, Cai LW, Wu LP, Zeng GD, Chen JC, Wu Q, Chen GQ (2014) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by beta-oxidation deleted Pseudomonas entomophila. Biomacromolecules 15:2310–2319

    Article  CAS  Google Scholar 

  46. Olivera E, Arcos M, Naharro G, Luengo J (2010) Unusual PHA biosynthesis. In: Chen GG-Q (ed) Plastics from bacteria. Microbiol Monographs, vol 14. Springer, Berlin, Heidelberg, pp. 133–186

    Chapter  Google Scholar 

  47. Shen R, Cai L, Meng D, Wu L, Guo K, Dong G, Liu L, Chen J, Wu Q, Chen G (2014) Benzene containing polyhydroxyalkanoates homo- and copolymers synthesized by genome edited Pseudomonas entomophila. Sci China Life Sci 57:4–10

    Article  CAS  Google Scholar 

  48. Abraham GA, Gallardo A, San Roman J, Olivera ER, Jodra R, Garcia B, Minambres B, Garcia JL, Luengo JM (2001) Microbial synthesis of poly(beta-hydroxyalkanoates) bearing phenyl groups from Pseudomonas putida: chemical structure and characterization. Biomacromolecules 2:562–567

    Article  CAS  Google Scholar 

  49. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987

    CAS  Google Scholar 

  50. Wang HH, Li XT, Chen GQ (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochem 44:106–111

    Article  Google Scholar 

  51. Chung AL, Jin HL, Huang LJ, Ye HM, Chen JC, Wu Q, Chen GQ (2011) Biosynthesis and characterization of poly(3-hydroxydodecanoate) by beta-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12:3559–3566

    Article  CAS  Google Scholar 

  52. Jagoda A, Ketikidis P, Zinn M, Meier W, Kita-Tokarczyk K (2011) Interactions of biodegradable poly([R]-3-hydroxy-10-undecenoate) with 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid: a monolayer study. Langmuir 27:10878–10885

    Article  CAS  Google Scholar 

  53. Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8:2504–2511

    Article  CAS  Google Scholar 

  54. Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001) Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromolecules 2:1061–1065

    Article  Google Scholar 

  55. Li SY, Dong CL, Wang SY, Ye HM, Chen GQ (2011) Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Appl Microbiol Biotechnol 90:659–669

    Article  CAS  Google Scholar 

  56. Hu D, Chung AL, Wu LP, Zhang X, Wu Q, Chen JC, Chen GQ (2011) Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules 12:3166–3173

    Article  CAS  Google Scholar 

  57. Tripathi L, Wu LP, Chen J, Chen GQ (2012) Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a beta-oxidation weakened Pseudomonas putida KT2442. Microb Cell Fact 11:44

    Article  CAS  Google Scholar 

  58. Wang Q, Yang P, Xian M, Liu H, Cao Y, Yang Y, Zhao G (2013) Production of block copolymer poly(3-hydroxybutyrate)-block-poly(3-hydroxypropionate) with adjustable structure from an inexpensive carbon source. ACS Macro Lett 2:996–1000

    Article  CAS  Google Scholar 

  59. Tripathi L, Wu LP, Meng D, Chen J, Chen GQ (2013) Biosynthesis and characterization of diblock copolymer of p(3-hydroxypropionate)-block-p(4-hydroxybutyrate) from recombinant Escherichia coli. Biomacromolecules 14:862–870

    Article  CAS  Google Scholar 

  60. Tripathi L, Wu LP, Meng DC, Chen JC, Wu Q, Chen GQ (2013) Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour Technol 142:225–231

    Article  CAS  Google Scholar 

  61. Hazer B (1994) Preparation of polystyrene poly(β-hydroxy nonanoate) graft copolymers. Polym Bull 33:431–438

    Article  CAS  Google Scholar 

  62. Cakmakli B, Hazer B, Borcakli M (2001) Poly(styrene peroxide) and poly(methyl methacrylate peroxide) for grafting on unsaturated bacterial polyesters. Macromol Biosci 1:348–354

    Article  CAS  Google Scholar 

  63. Zhang J, Kasuya K, Takemura A, Isogai A, Iwata T (2013) Properties and enzymatic degradation of poly(acrylic acid) grafted polyhydroxyalkanoate films by plasma-initiated polymerization. Polym Degrad Stab 98:1458–1464

    Article  Google Scholar 

  64. Hu SG, Jou CH, Yang MC (2003) Antibacterial and biodegradable properties of polyhydroxyalkanoates grafted with chitosan and chitooligosaccharides via ozone treatment. J Appl Polym Sci 88:2797–2803

    Article  CAS  Google Scholar 

  65. Yalpani M, Marchessault RH, Morin FG, Monasterios CJ (1991) Synthesis of poly(3-hydroxyalkanoate) (PHA) conjugates: PHA-carbohydrate and PHA-synthetic polymer conjugates. Macromolecules 24:6046–6049

    Article  CAS  Google Scholar 

  66. Domenek S, Langlois V, Renard E (2007) Bacterial polyesters grafted with poly(ethylene glycol): behaviour in aqueous media. Polym Degrad Stab 92:1384–1392

    Article  CAS  Google Scholar 

  67. Kim HW, Chung CW, Hwang SJ, Rhee YH (2005) Drug release from and hydrolytic degradation of a poly(ethylene glycol) grafted poly(3-hydroxyoctanoate). Int J Biol Macromol 36:84–89

    Article  CAS  Google Scholar 

  68. Renard E, Tanguy PY, Samain E, Guerin P (2003) Synthesis of novel graft polyhydroxyalkanoates. Macromol Symp 197:11–18

    Article  CAS  Google Scholar 

  69. Chung MG, Kim HW, Kim BR, Kim YB, Rhee YH (2012) Biocompatibility and antimicrobial activity of poly(3-hydroxyoctanoate) grafted with vinylimidazole. Int J Biol Macromol 50:310–316

    Article  CAS  Google Scholar 

  70. Kim HW, Chung MG, Kim YB, Rhee YH (2008) Graft copolymerization of glycerol 1,3-diglycerolate diacrylate onto poly(3-hydroxyoctanoate) to improve physical properties and biocompatibility. Int J Biol Macromol 43:307–313

    Article  CAS  Google Scholar 

  71. Le Fer G, Babinot J, Versace D-L, Langlois V, Renard E (2012) An efficient thiol-ene chemistry for the preparation of amphiphilic PHA-based graft copolymers. Macromol Rapid Commun 33:2041–2045

    Article  CAS  Google Scholar 

  72. Ishida K, Hortensius R, Luo X, Mather PT (2012) Soft bacterial polyester-based shape memory nanocomposites featuring reconfigurable nanostructure. J Polym Sci B Polym Phys 50:387–393

    Article  CAS  Google Scholar 

  73. Park J, Park JG, Choi WM, Ha CS, Cho WJ (1999) Synthesis and photo- and biodegradabilities of poly[(hydroxybutyrate-co-hydroxyvalerate)-g-phenyl vinyl ketone]. J Appl Polym Sci 74:1432–1439

    Article  CAS  Google Scholar 

  74. Lee HS, Lee TY (1997) Graft polymerization of acrylamide onto poly(hydroxybutyrate-co-hydroxyvalerate) films. Polymer 38:4505–4511

    Article  CAS  Google Scholar 

  75. Shen XW, Yang Y, Jian J, Wu Q, Chen GQ (2009) Production and characterization of homopolymer poly(3-hydroxyvalerate) (PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4. Bioresour Technol 100:4296–4299

    Article  CAS  Google Scholar 

  76. Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, Lee SH, Song BK, Lee SY (2012) Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 93:273–283

    Article  Google Scholar 

  77. Wang Q, Yang P, Liu CS, Xue YC, Xian M, Zhao G (2013) Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli. Bioresour Technol 131:548–551

    Article  CAS  Google Scholar 

  78. Andreessen B, Steinbüchel A (2010) Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters. Appl Environ Microbiol 76:4919–4925

    Article  CAS  Google Scholar 

  79. Zhang L, Shi ZY, Wu Q, Chen GQ (2009) Microbial production of 4-hydroxybutyrate, poly-4-hydroxybutyrate, and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by recombinant microorganisms. Appl Microbiol Biotechnol 84:909–916

    Article  CAS  Google Scholar 

  80. Hein S, Sohling B, Gottschalk G, Steinbuchel A (1997) Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 153:411–418

    Article  CAS  Google Scholar 

  81. Sohling B, Gottschalk G (1996) Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri. J Bacteriol 178:871–880

    Article  CAS  Google Scholar 

  82. Alber BE, Fuchs G (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277:12137–12143

    Article  CAS  Google Scholar 

  83. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, dos Santos VAPM, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  Google Scholar 

  84. Celinska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28:519–530

    Article  CAS  Google Scholar 

  85. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  Google Scholar 

  86. Alber B, Olinger M, Rieder A, Kockelkorn D, Jobst B, Hugler M, Fuchs G (2006) Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559

    Article  CAS  Google Scholar 

  87. Wang Q, Liu CS, Xian M, Zhang YG, Zhao G (2012) Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli. J Microbiol 50:693–697

    Article  CAS  Google Scholar 

  88. Albertyn J, Vantonder A, Prior BA (1992) Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. FEBS Lett 308:130–132

    Article  CAS  Google Scholar 

  89. Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae – identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881

    Article  CAS  Google Scholar 

  90. Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae – functions of the coenzyme-B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419

    CAS  Google Scholar 

  91. Liang QF, Zhang HJ, Li SN, Qi QS (2011) Construction of stress-induced metabolic pathway from glucose to 1,3-propanediol in Escherichia coli. Appl Microbiol Biotechnol 89:57–62

    Article  CAS  Google Scholar 

  92. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC (1999) The propanediol utilization (pdu) operon of Salmonella enterica serovar typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B-12-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975

    CAS  Google Scholar 

  93. Leal NA, Havemann GD, Bobik TA (2003) PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361

    Article  CAS  Google Scholar 

  94. Hiramitsu M, Doi Y (1993) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxypropionate). Polymer 34:4782–4786

    Article  CAS  Google Scholar 

  95. Salles IM, Forchhammer N, Croux C, Girbal L, Soucaille P (2007) Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng 9:152–159

    Article  Google Scholar 

  96. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  Google Scholar 

  97. Lv L, Ren YL, Chen JC, Wu Q, Chen GQ (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:160–168

    Article  CAS  Google Scholar 

  98. Jiang XR, Wang H, Shen R, Chen GQ (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237

    Article  CAS  Google Scholar 

  99. van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by 973 Basic Research Fund (Grant No. 2012CB725201), National High Tech 863 Grants (Grant No. 2012AA023102), and a Grant from National Natural Science Foundation of China (Grant No. 31270146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Meng, DC., Chen, GQ. (2017). Synthetic Biology of Polyhydroxyalkanoates (PHA). In: Zhao, H., Zeng, AP. (eds) Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 162. Springer, Cham. https://doi.org/10.1007/10_2017_3

Download citation

Publish with us

Policies and ethics