Skip to main content

Molecular Enzymology of Mammalian DNA Methyltransferases

  • Chapter
Book cover DNA Methylation: Basic Mechanisms

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 301))

Abstract

DNA methylation is an essential modification of DNA in mammals that is involved in gene regulation, development, genome defence and disease. In mammals 3 families of DNA methyltransferases (MTases) comprising (so far) 4 members have been found: Dnmt1, Dnmt2, Dnmt3A and Dnmt3B. In addition, Dnmt3L has been identified as a stimulator of the Dnmt3A and Dnmt3B enzymes. In this review the enzymology of the mammalian DNA MTases is described, starting with a depiction of the catalytic mechanism that involves covalent catalysis and base flipping. Subsequently, important mechanistic features of the mammalian enzyme are discussed including the specificity of Dnmt1 for hemimethylated target sites, the target sequence specificity of Dnmt3A, Dnmt3B and Dnmt2 and the flanking sequence preferences of Dnmt3A and Dnmt3B. In addition, the processivity of the methylation reaction by Dnmt1, Dnmt3A and Dnmt3B is reviewed. Finally, the control of the catalytic activity of mammalian MTases is described that includes the regulation of the activity ofDnmt1 by its N-terminal domain and the interaction of Dnmt3A and Dnmt3B with Dnmt3L. The allosteric activation of Dnmt1 for methylation at unmodified sites is described. Wherever possible, correlations between the biochemical properties of the enzymes and their physiological functions in the cell are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, Shintani A, Minoshima S, Krohn K, Antonarakis SE, Shimizu N, Kudoh J, Peterson P (2000) Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65:293–298

    Article  CAS  PubMed  Google Scholar 

  • Aapola U, Liiv I, Peterson P (2002) Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 30:3602–3608

    Article  CAS  PubMed  Google Scholar 

  • Aoki A, Suetake I, Miyagawa J, Fujio T, Chijiwa T, Sasaki H, Tajima S (2001) Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res 29:3506–3512

    Article  CAS  PubMed  Google Scholar 

  • Araujo FD, Croteau S, Slack AD, Milutinovic S, Bigey P, Price GB, Zannis-Hajopoulos M, Szyf M (2001) The DNMT1 target recognition domain resides in the N terminus. J Biol Chem 276:6930–6936

    Article  CAS  PubMed  Google Scholar 

  • Bachman KE, Rountree MR, Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276:32282–32287

    Article  CAS  PubMed  Google Scholar 

  • Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB, Kinzler KW, Vogelstein B (2003) Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3:89–95

    Article  CAS  PubMed  Google Scholar 

  • Bacolla A, Pradhan S, Roberts RJ, Wells RD (1999) Recombinant human DNA (cytosine-5) methyltransferase. II. Steady-state kinetics reveal allosteric activation by methylated DNA. J Biol Chem 274:33011–33019

    Article  CAS  PubMed  Google Scholar 

  • Bacolla A, Pradhan S, Larson JE, Roberts RJ, Wells RD (2001) Recombinanthuman DNA (cytosine-5) methyltransferase. III. Allosteric control, reaction order, and influence of plasmid topology and triplet repeat length on methylation of the fragile X CGG.CCG sequence. J Biol Chem 276:18605–18613

    CAS  PubMed  Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203:971–983

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11:2611–2617

    CAS  PubMed  Google Scholar 

  • Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci U S A 80:5559–5563

    CAS  PubMed  Google Scholar 

  • Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D, Mastrangelo MA, Jun Z, Walter J, Jaenisch R (2002) Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 22:2124–2135

    Article  CAS  PubMed  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    CAS  PubMed  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    CAS  PubMed  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  CAS  PubMed  Google Scholar 

  • Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99:16916–16921

    Article  CAS  PubMed  Google Scholar 

  • Chen L, MacMillan AM, Chang W, Ezaz-Nikpay K, Lane WS, Verdine GL (1991) Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 30:11018–11025

    CAS  PubMed  Google Scholar 

  • Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89

    CAS  PubMed  Google Scholar 

  • Chen T, Ueda Y, Dodge JE, Wang Z, Li E (2003) Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23:5594–5605

    CAS  PubMed  Google Scholar 

  • Cheng X (1995) Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–318

    CAS  PubMed  Google Scholar 

  • Cheng X, Roberts RJ (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29:3784–3795

    Article  CAS  PubMed  Google Scholar 

  • Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21 WAF1. Science 277:1996–2000

    Article  CAS  PubMed  Google Scholar 

  • Datta J, Ghoshal K, Sharma SM, Tajima S, Jacob ST (2003) Biochemical fractionation reveals association of DNA methyltransferase (Dnmt) 3b with Dnmt1 and that of Dnmt 3a with a histone H3 methyltransferase and Hdac1. J Cell Biochem 88:855–864

    Article  CAS  PubMed  Google Scholar 

  • Dodge JE, Ramsahoye BH, Wo ZG, Okano M, Li E (2002) De novo methylation of MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene 289:41–48

    Article  CAS  PubMed  Google Scholar 

  • Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X (2001) Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 29:439–448

    CAS  PubMed  Google Scholar 

  • Ehrlich M (2003) Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem 88:899–910

    Article  CAS  PubMed  Google Scholar 

  • Everett EA, Falick AM, Reich NO (1990) Identification of a critical cysteine in EcoRI DNA methyltransferase by mass spectrometry. J Biol Chem 265:17713–17719

    CAS  PubMed  Google Scholar 

  • Fahrner JA, Eguchi S, Herman JG, Baylin SB (2002) Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62:7213–7218

    CAS  PubMed  Google Scholar 

  • Fatemi M, Hermann A, Pradhan S, Jeltsch A (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309:1189–1199

    Article  CAS  PubMed  Google Scholar 

  • Fatemi M, Hermann A, Gowher H, Jeltsch A (2002) Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem 269:4981–4984

    Article  CAS  PubMed  Google Scholar 

  • Flynn J, Reich N (1998) Murine DNA (cytosine-5-)-methyltransferase: steady-state and substrate trapping analyses of the kinetic mechanism. Biochemistry 37:15162–15169

    Article  CAS  PubMed  Google Scholar 

  • Flynn J, Glickman JF, Reich NO (1996) Murine DNA cytosine-C5 methyltransferase: pre-steady-and steady-state kinetic analysis with regulatory DNA sequences. Biochemistry 35:7308–7315

    Article  CAS  PubMed  Google Scholar 

  • Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305–2312

    Article  CAS  PubMed  Google Scholar 

  • Ge YZ, Pu MT, Gowher H, Wu HP, Ding JP, Jeltsch A, Xu GL (2004) Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem 279:25447–25454

    CAS  PubMed  Google Scholar 

  • Glickman JF, Pavlovich JG, Reich NO (1997) Peptide mapping of the murine DNA methyltransferase reveals a major phosphorylation site and the start of translation. J Biol Chem 272:17851–17857

    Article  CAS  PubMed  Google Scholar 

  • Goedecke K, Pignot M, Goody RS, Scheidig AJ, Weinhold E (2001) Structure of the N6-adenine DNA methyltransferase M. TaqI in complex with DNA and a cofactor analog. Nat Struct Biol 8:121–125

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Jeltsch A (2001) Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG sites. J Mol Biol 309:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Jeltsch A (2002) Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem 277:20409–20414

    Article  CAS  PubMed  Google Scholar 

  • Gowher H, Jeltsch A (2004) Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol Ther 3

    Google Scholar 

  • Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3a and Dnmt3b DNA-(cytosine C5)-methyltransferaes by Dnmt3L. J Biol Chem 280:13341–13348

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum Y, Cedar H, Razin A (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295:620–622

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum Y, Szyf M, Cedar H, Razin A (1983) Methylation of replicating and post-replicated mouse L-cell DNA. Proc Natl Acad Sci U S A 80:4919–4921

    CAS  PubMed  Google Scholar 

  • Hanck T, Schmidt S, Fritz HJ (1993) Sequence-specific and mechanism-based crosslinking of Dcm DNA cytosine-C5 methyltransferase of E. coli K-12 to synthetic oligonucleotides containing 5-fluoro-2′-deoxycytidine. Nucleic Acids Res 21:303–309

    CAS  PubMed  Google Scholar 

  • Handa V, Jeltsch A (2005) Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian methyltransferases shape the human epigenome. JMol Biol 348:1103–1112

    CAS  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 96:14412–14417

    CAS  PubMed  Google Scholar 

  • Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993

    CAS  PubMed  Google Scholar 

  • Hermann A, Schmitt S, Jeltsch A (2003) The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278:31717–31721

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Gowher H, Jeltsch A (2004a) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004b) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CL (1999) In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol 19:8211–8218

    CAS  PubMed  Google Scholar 

  • Hurd PJ, Whitmarsh AJ, Baldwin GS, Kelly SM, Waltho JP, Price NC, Connolly BA, Hornby DP (1999) Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone. J Mol Biol 286:389–401

    Article  CAS  PubMed  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3:274–293

    CAS  PubMed  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    Article  CAS  PubMed  Google Scholar 

  • Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21:4183–4195

    CAS  PubMed  Google Scholar 

  • Kim M, Trinh BN, Long TI, Oghamian S, Laird PW (2004) Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells. Nucleic Acids Res 32:5742–5749

    CAS  PubMed  Google Scholar 

  • Kimura H, Shiota K (2003) Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem 278:4806–4812

    CAS  PubMed  Google Scholar 

  • Klimasauskas S, Kumar S, Roberts RJ, Cheng X (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76:357–369

    Article  CAS  PubMed  Google Scholar 

  • Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A 93:2879–2883

    Article  CAS  PubMed  Google Scholar 

  • Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  CAS  PubMed  Google Scholar 

  • Kunert N, Marhold J, Stanke J, Stach D, Lyko F (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila. Development 130:5083–5090

    Article  CAS  PubMed  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation tomajor satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–873

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    CAS  PubMed  Google Scholar 

  • Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491

    Article  CAS  PubMed  Google Scholar 

  • Lin IG, Han L, Taghva A, O’Brien LE, Hsieh CL (2002) Murine denovomethyl transferase Dnmt3a demonstrates strand asymmetry and site preference in the methylation of DNA in vitro. Mol Cell Biol 22:704–723

    CAS  PubMed  Google Scholar 

  • Lin MJ, Tang LY, Reddy MN, Shen CK (2004) DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J Biol Chem 280:861–864

    PubMed  Google Scholar 

  • Liu K, Wang YF, Cantemir C, Muller MT (2003) Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol Cell Biol 23:2709–2719

    CAS  PubMed  Google Scholar 

  • Liu Z, Fisher RA (2004) RGS6 interacts with DMAP1 and DNMT1 and inhibits DMAP1 transcriptional repressor activity. J Biol Chem 279:14120–14128

    CAS  PubMed  Google Scholar 

  • Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060

    Article  CAS  PubMed  Google Scholar 

  • Malone T, Blumenthal RM, Cheng X (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 253:618–632

    Article  CAS  PubMed  Google Scholar 

  • Margot JB, Aguirre-Arteta AM, Di Giacco BV, Pradhan S, Roberts RJ, Cardoso MC, Leonhardt H (2000) Structure and function of the mouse DNA methyltransferase gene: Dnmt1 shows a tripartite structure. J Mol Biol 297:293–300

    Article  CAS  PubMed  Google Scholar 

  • Margot JB, Ehrenhofer-Murray AE, Leonhardt H (2003) Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol 4:7

    Article  PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Osterman DG, DePillis GD, Wu JC, Matsuda A, Santi DV (1988) 5-Fluorocytosine in DNA is a mechanism-based inhibitor of HhaI methylase. Biochemistry 27:5204–5210

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Esteve PO (2003a) Allosteric activator domain of maintenance human DNA (cytosine-5) methyltransferase and its role in methylation spreading. Biochemistry 42:5321–5332

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Esteve PO (2003b) Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 109:6–16

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Kim GD (2002) The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J 21:779–788

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Talbot D, Sha M, Benner J, Hornstra L, Li E, Jaenisch R, Roberts RJ (1997) Baculovirus-mediated expression and characterization of the full-length murine DNA methyltransferase. Nucleic Acids Res 25:4666–4673

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Bacolla A, Wells RD, Roberts RJ (1999) Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 274:33002–33010

    Article  CAS  PubMed  Google Scholar 

  • Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97:5237–5242

    Article  CAS  PubMed  Google Scholar 

  • Reinisch KM, Chen L, Verdine GL, Lipscomb WN (1995) The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82:143–153

    Article  CAS  PubMed  Google Scholar 

  • Reither S, Li F, Gowher H, Jeltsch A (2003) Catalytic mechanism of DNA-(cytosine-C5)-methyltransferases revisited: covalent intermediate formation is not essential for methyl group transfer by the murine Dnmt3a enzyme. JMol Biol 329:675–684

    CAS  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Cheng X (1998) Base flipping. Annu Rev Biochem 67:181–198

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev S, Dryden DT, Dybvig K, et al (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812

    CAS  PubMed  Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    CAS  PubMed  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new corepressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Vinuesa CG, Blasioli J, Goodnow CC (2003) Resistance to CpG DNA-induced autoimmunity through tolerogenic B cell antigen receptor ERK signaling. Nat Immunol 4:594–600

    Article  PubMed  Google Scholar 

  • Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A 81:6993–6997

    CAS  PubMed  Google Scholar 

  • Sarraf SA, Stancheva I (2004) Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15:595–605

    Article  CAS  PubMed  Google Scholar 

  • Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S (2004) DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279:27816–27823

    Article  CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU (2001) Ahistone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  CAS  PubMed  Google Scholar 

  • Tang LY, Reddy MN, Rasheva V, Lee TL, Lin MJ, Hung MS, Shen CK (2003) The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. J Biol Chem 278:33613–33616

    CAS  PubMed  Google Scholar 

  • Tariq M, Saze H, Probst AV, Lichota J, Habu Y, Paszkowski J (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A 100:8823–8827

    Article  CAS  PubMed  Google Scholar 

  • Tollefsbol TO, Hutchison CA 3rd (1995) Mammalian DNA (cytosine-5-)-methyltransferase expressed in Escherichia coli, purified and characterized. J Biol Chem 270:18543–18550

    CAS  PubMed  Google Scholar 

  • Tollefsbol TO, Hutchison CA 3rd (1997) Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase. J Mol Biol 269:494–504

    Article  CAS  PubMed  Google Scholar 

  • Wang KY, James Shen CK (2004) DNA methyltransferase Dnmt1 and mismatch repair. Oncogene 23:7898–7902

    CAS  PubMed  Google Scholar 

  • Wu JC, Santi DV (1985) On the mechanism and inhibition of DNA cytosine methyltransferases. Prog Clin Biol Res 198:119–129

    CAS  PubMed  Google Scholar 

  • Wu JC, Santi DV (1987) Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem 262:4778–4786

    CAS  PubMed  Google Scholar 

  • Wyszynski MW, Gabbara S, Bhagwat AS (1992) Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes. Nucleic Acids Res 20:319–326

    CAS  PubMed  Google Scholar 

  • Wyszynski MW, Gabbara S, Kubareva EA, Romanova EA, Oretskaya TS, Gromova ES, Shabarova ZA, Bhagwat AS (1993) The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding. Nucleic Acids Res 21:295–301

    CAS  PubMed  Google Scholar 

  • Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Soman NS, Verdine GL, Bestor TH (1997) DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 270:385–395

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann C, Guhl E, Graessmann A (1997) Mouse DNA methyltransferase (MTase) deletion mutants that retain the catalytic domain display neither de novo nor maintenance methylation activity in vivo. Biol Chem 378:393–405

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeltsch, A. (2006). Molecular Enzymology of Mammalian DNA Methyltransferases. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Basic Mechanisms. Current Topics in Microbiology and Immunology, vol 301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31390-7_7

Download citation

Publish with us

Policies and ethics