Skip to main content

Neuropathological Techniques to Investigate Central Nervous System Sections in Multiple Sclerosis

  • Protocol
  • First Online:
Multiple Sclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1304))

Abstract

Immunohistochemical techniques (IHC) and in situ hybridization (ISH) are widely used techniques to study the expression of proteins and messenger RNAs in tissues and are extremely important to confirm and interpret biochemical and molecular results from the same tissues. Investigation of human brain by IHC and ISH therefore still plays an important role in the elucidation of pathogenetic mechanisms in diseases such as multiple sclerosis. In this review we describe the processing of human brain tissues as well as basic and advanced immunohistochemical staining and ISH techniques used for neuropathological analysis of such pathological brains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassmann H (2007) Experimental models of multiple sclerosis. Rev Neurol 163:651–655

    Article  CAS  PubMed  Google Scholar 

  2. Wekerle H (2008) Lessons from multiple sclerosis: models, concepts, observations. Ann Rheum Dis 67(Suppl 3):iii56–iii60

    Article  PubMed  Google Scholar 

  3. Schuh C, Wimmer I, Hametner S, Haider L, Van Dam AM, Liblau RS et al (2014) Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathol 128:247–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fischer MT, Wimmer I, Hoftberger R, Gerlach S, Haider L, Zrzavy T et al (2013) Disease-specific molecular events in cortical multiple sclerosis lesions. Brain 136:1799–1815

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bradl M, Lassmann H (2012) Microarray analysis on archival multiple sclerosis tissue: pathogenic authenticity outweighs technical obstacles. Neuropathology 32:463–466

    Article  PubMed  Google Scholar 

  6. King G, Payne S, Walker F, Murray GI (1997) A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. J Pathol 183:237–241

    Article  CAS  PubMed  Google Scholar 

  7. Bauer J, Eiger CE, Hans VH, Schramm J, Urbach H, Lassmann H et al (2007) Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann Neurol 62:67–80

    Article  PubMed  Google Scholar 

  8. Hopman AH, Ramaekers FC, Speel EJ (1998) Rapid synthesis of biotin-, digoxigenin-, trinitrophenyl-, and fluorochrome-labeled tyramides and their application for In situ hybridization using CARD amplification. J Histochem Cytochem 46:771–777

    Article  CAS  PubMed  Google Scholar 

  9. Bien CG, Bauer J, Deckwerth TL, Wiendl H, Deckert M, Wiestler OD et al (2002) Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann Neurol 51:311–318

    Article  CAS  PubMed  Google Scholar 

  10. Toth ZE, Mezey E (2007) Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem 55:545–554

    Article  CAS  PubMed  Google Scholar 

  11. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Breitschopf H, Suchanek G, Gould RM, Colman DR, Lassmann H (1992) In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol 84:581–587

    Article  CAS  PubMed  Google Scholar 

  13. Hart BA, Bauer J, Muller HJ, Melchers B, Nicolay K, Brok H et al (1998) Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis—a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am J Pathol 153:649–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  15. Bauer J, Bradl M, Klein M, Leisser M, Deckwerth T, Wekerle H et al (2002) Endoplasmic reticulum stress in PLP-overexpressing transgenic rats: gray matter oligodendrocytes are more vulnerable than white matter oligodendrocytes. J Neuropathol Exp Neurol 61:12–22

    PubMed  Google Scholar 

  16. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    Article  PubMed  Google Scholar 

  17. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  18. Lassmann H (2011) Review: the architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol Appl Neurobiol 37:698–710

    Article  CAS  PubMed  Google Scholar 

  19. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Bruck W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kutzelnigg A, Faber-Rod J, Bauer J, Lucchinetti C, Sorensen P, Laursen H et al (2007) Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol 17:38–44

    Article  PubMed  Google Scholar 

  21. Kap YS, Bauer J, Driel N, Bleeker WK, Parren PW, Kooi EJ et al (2011) B-cell depletion attenuates white and gray matter pathology in marmoset experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 70:992–1005

    Article  PubMed  Google Scholar 

  22. Bien CG, Vincent A, Barnett MH, Becker AJ, Blümcke I, Graus F et al (2012) Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135:1622–1638

    Article  PubMed  Google Scholar 

  23. Van der Loos CM, Das PK, Van den Oord JJ, Houthoff HJ (1989) Multiple immunoenzyme staining techniques. Use of fluoresceinated, biotinylated and unlabelled monoclonal antibodies. J Immunol Methods 117:45–52

    Article  PubMed  Google Scholar 

  24. Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Bruck W et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33

    CAS  PubMed  Google Scholar 

  25. Warford A, Akbar H, Riberio D (2014) Antigen retrieval, blocking, detection and visualisation systems in immunohistochemistry: a review and practical evaluation of tyramide and rolling circle amplification systems. Methods pii: S1046-2023(14)00094-2

    Google Scholar 

  26. Sargent PB (1994) Double-label immunofluorescence with the laser scanning confocal microscope using cyanine dyes. Neuroimage 1:288–295

    Article  CAS  PubMed  Google Scholar 

  27. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ et al (2003) Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51:1699–1712

    Article  CAS  PubMed  Google Scholar 

  28. Marlatt MW, Bauer J, Aronica E, van Haastert ES, Hoozemans JJ, Joels M et al (2014) Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014:693851

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ulrike Köck and Marianne Leißer for their technical assistance and their help with the writing of the various protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lassmann M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bauer, J., Lassmann, H. (2014). Neuropathological Techniques to Investigate Central Nervous System Sections in Multiple Sclerosis. In: Weissert, R. (eds) Multiple Sclerosis. Methods in Molecular Biology, vol 1304. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_151

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_151

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2629-9

  • Online ISBN: 978-1-4939-2630-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics