Skip to main content

Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit Disorder

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 13))

Abstract

Alcoholism can be defined by a compulsion to seek and take drug, loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug is prevented. Alcoholism impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). The compulsive drug seeking associated with alcoholism can be derived from multiple neuroadaptations, but the thesis argued here is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from dysregulation of specific neurochemical elements involved in reward and stress within the basal forebrain structures involving the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission, such as decreased dopamine and γ-aminobutyric acid function in the ventral striatum, but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Acute withdrawal from chronic alcohol, sufficient to produce dependence, increases reward thresholds, increases anxiety-like responses, decreases dopamine system function, and increases extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of alcoholism. Other components of brain stress systems in the extended amygdala that interact with CRF and that may contribute to the negative motivational state of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least partially, the compulsivity of alcoholism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alheid GF, De Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system. Academic Press, San Diego, pp 495–578

    Google Scholar 

  • Allen TJ, Moeller FG, Rhoades HM, Cherek DR (1998) Impulsivity and history of drug dependence. Drug Alcohol Depend 50:137–145

    CAS  PubMed  Google Scholar 

  • Alonso G, Szafarczyk A, Balmefrezol M, Assenmacher I (1986) Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin-releasing hormone and vasopressin in rats. Brain Res 397:297–307

    CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Press, Washington, DC

    Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn, text revision. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999) The bed nucleus of the stria terminalis: a target site for noradrenergic actions in opiate withdrawal. In: McGinty JF (ed) Advancing from the ventral striatum to the extended amygdala: implications for neuropsychiatry and drug abuse (series title: Annals of the New York Academy of Sciences, vol 877). New York Academy of Sciences, New York, pp 486–498

    Google Scholar 

  • Baldwin HA, Rassnick S, Rivier J, Koob GF, Britton KT (1991) CRF antagonist reverses the “anxiogenic” response to ethanol withdrawal in the rat. Psychopharmacology 103:227–232

    CAS  PubMed  Google Scholar 

  • Becker HC, Lopez MF (2004) Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol: Clin Exp Res 28:1829–1838

    CAS  Google Scholar 

  • Besson JM (1999) The neurobiology of pain. Lancet 353:1610–1615

    CAS  PubMed  Google Scholar 

  • Blackburn-Munro G, Jensen BS (2003) The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol 460:109–116

    CAS  PubMed  Google Scholar 

  • Breese GR, Overstreet DH, Knapp DJ, Navarro M (2005) Prior multiple ethanol withdrawals enhance stress-induced anxiety-like behavior: inhibition by CRF1- and benzodiazepine-receptor antagonists and a 5-HT1a-receptor agonist. Neuropsychopharmacology 30:1662–1669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown SA, Schuckit MA (1988) Changes in depression among abstinent alcoholics. J Stud Alcohol 49:412–417

    CAS  PubMed  Google Scholar 

  • Brown G, Jackson A, Stephens DN (1998) Effects of repeated withdrawal from chronic ethanol on oral self-administration of ethanol on a progressive ratio schedule. Behav Pharmacol 9:149–161

    CAS  PubMed  Google Scholar 

  • Chance WT, Sheriff S, Peng F, Balasubramaniam A (2000) Antagonism of NPY-induced feeding by pretreatment with cyclic AMP response element binding protein antisense oligonucleotide. Neuropeptides 34:167–172

    CAS  PubMed  Google Scholar 

  • Chu K, Koob GF, Cole M, Zorrilla EP, Roberts AJ (2007) Dependence-induced increases in ethanol self-administration in mice are blocked by the CRF1 receptor antagonist antalarmin and by CRF1 receptor knockout. Pharmacol Biochem Behav 86:813–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Timary P, Luts A, Hers D, Luminet O (2008) Absolute and relative stability of alexithymia in alcoholic inpatients undergoing alcohol withdrawal: relationship to depression and anxiety. Psychiatry Res 157:105–113

    PubMed  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones G (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403:430–434

    CAS  PubMed  Google Scholar 

  • Devaud LL, Fritschy JM, Sieghart W, Morrow AL (1997) Bidirectional alterations of GABAA receptor subunit pepetide levels in rat cortex during chronic ethanol consumption and withdrawal. J Neurochem 69:126–130

    CAS  PubMed  Google Scholar 

  • Di Ciano P, Coury A, Depoortere RY, Egilmez Y, Lane JD, Emmett-Oglesby MW, Lepiane FG, Phillips AG, Blaha CD (1995) Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behav Pharmacol 6:311–322

    CAS  PubMed  Google Scholar 

  • Doyon WM, York JL, Diaz LM, Samson HH, Czachowski CL, Gonzales RA (2003) Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration. Alcohol: Clin Exp Res 27:1573–1582

    CAS  Google Scholar 

  • Driessen M, Meier S, Hill A, Wetterling T, Lange W, Junghanns K (2001) The course of anxiety, depression and drinking behaviours after completed detoxification in alcoholics with and without comorbid anxiety and depressive disorders. Alcohol Alcoholism 36:249–255

    CAS  PubMed  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    CAS  PubMed  Google Scholar 

  • Fidler TL, Clews TW, Cunningham CL (2006) Reestablishing an intragastric ethanol self-infusion model in rats. Alcohol: Clin Exp Res 30:414–428

    Google Scholar 

  • Fillmore MT, Rush CR (2002) Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend 66:265–273

    PubMed  Google Scholar 

  • Finn DA, Snelling C, Fretwell AM, Tanchuck MA, Underwood L, Cole M, Crabbe JC, Roberts AJ (2007) Increased drinking during withdrawal from intermittent ethanol exposure is blocked by the CRF receptor antagonist D-Phe-CRF(12–41). Alcohol: Clin Exp Res 31:939–949

    CAS  Google Scholar 

  • Funk CK, O’Dell LE, Crawford EF, Koob GF (2006) Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J Neurosci 26:11324–11332

    CAS  PubMed  Google Scholar 

  • Funk CK, Zorrilla EP, Lee M-J, Rice KC, Koob GF (2007) Corticotropin-releasing factor 1 antagonists selectively reduce ethanol self-administration in ethanol-dependent rats. Biol Psychiatry 61:78–86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gardner EL, Vorel SR (1998) Cannabinoid transmission and reward-related events. Neurobiol Dis 5:502–533

    CAS  PubMed  Google Scholar 

  • Gehlert DR, Cippitelli A, Thorsell A, Le AD, Hipskind PA, Hamdouchi C, Lu J, Hembre EJ, Cramer J, Song M, McKinzie D, Morin M, Ciccocioppo R, Heilig M (2007) 3-(4-Chloro-2-morpholin-4-ylthiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine: a novel brainpenetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J Neurosci 27:2718–2726

    Google Scholar 

  • George O, Koob GF (2010) Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev (in press)

    Google Scholar 

  • Gilpin NW, Misra K, Koob GF (2008) Neuropeptide Y in the central nucleus of the amygdala suppresses dependence-induced increases in alcohol drinking. Pharmacol Biochem Behav 90:475–480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilpin NW, Smith AD, Cole M, Weiss F, Koob GF, Richardson HN (2009) Operant behavior and alcohol levels in blood and brain of alcohol-dependent rats. Alcohol: Clin Exp Res 33:2113–2123 [erratum: 34: 382]

    CAS  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159:1642–1652

    PubMed Central  PubMed  Google Scholar 

  • Goodwin DW (1981) Alcoholism: the facts. Oxford University Press, New York

    Google Scholar 

  • Green L, Fristoe N, Myerson J (1994) Temporal discounting and preference reversals in choice between delayed outcomes. Psychon Bull Rev 1:383–389

    CAS  PubMed  Google Scholar 

  • Hebb DO (1972) Textbook of psychology, 3rd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  • Heilig M, Koob GF (2007) A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci 30:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heimer L, Alheid G (1991) Piecing together the puzzle of basal forebrain anatomy. In: Napier TC, Kalivas PW, Hanin I (eds) The basal forebrain: Anatomy to function (series title: advances in experimental medicine and biology, vol 295). Plenum Press, New York, pp 1–42

    Google Scholar 

  • Heinz A, Lober S, Georgi A, Wrase J, Hermann D, Rey ER, Wellek S, Mann K (2003) Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake. Alcohol Alcoholism 38:35–39

    PubMed  Google Scholar 

  • Hemby SE, Martin TJ, Co C, Dworkin SI, Smith JE (1995) The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J Pharmacol Exp Ther 273:591–598

    CAS  PubMed  Google Scholar 

  • Hernandez G, Hamdani S, Rajabi H, Conover K, Stewart J, Arvanitogiannis A, Shizgal P (2006) Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. Behav Neurosci 120:888–904

    CAS  PubMed  Google Scholar 

  • Holter SM, Henniger MS, Lipkowski AW, Spanagel R (2000) Kappa-opioid receptors and relapse-like drinking in long-term ethanol-experienced rats. Psychopharmacology 153:93–102

    CAS  PubMed  Google Scholar 

  • Ji D, Gilpin NW, Richardson HN, Rivier CL, Koob GF (2008) Effects of naltrexone, duloxetine, and a corticotropin-releasing factor type 1 receptor antagonist on binge-like alcohol drinking in rats. Behav Pharmacol 19:1–12

    PubMed Central  PubMed  Google Scholar 

  • Khantzian EJ (1997) The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harv Rev Psychiatry 4:231–244

    CAS  PubMed  Google Scholar 

  • Khantzian EJ (2003) Understanding addictive vulnerability: an evolving psychodynamic perspective. Neuro-Psychoanalysis 5:5–7

    Google Scholar 

  • Knapp C (1996) Drinking: a love story. Dial Press, New York

    Google Scholar 

  • Knapp DJ, Overstreet DH, Moy SS, Breese GR (2004) SB242084, flumazenil, and CRA1000 block ethanol withdrawal-induced anxiety in rats. Alcohol 32:101–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knapp DJ, Overstreet DH, Breese GR (2005) Modulation of ethanol withdrawal-induced anxiety-like behavior during later withdrawals by treatment of early withdrawals with benzodiazepine/γ-aminobutyric acid ligands. Alcohol: Clin Exp Res 29:553–563

    CAS  Google Scholar 

  • Knapp DJ, Overstreet DH, Breese GR (2007) Baclofen blocks expression and sensitization of anxiety-like behavior in an animal model of repeated stress and ethanol withdrawal. Alcohol: Clin Exp Res 31:582–595

    CAS  Google Scholar 

  • Kohut H (1971) The analysis of the self (series title: the psychoanalytic study of the child, vol 4). International Universities Press, New York

    Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology, and function of reward pathways. Trends Pharmacol Sci 13:177–184

    CAS  PubMed  Google Scholar 

  • Koob GF (1999) Corticotropin-releasing factor, norepinephrine and stress. Biol Psychiatry 46:1167–1180

    CAS  PubMed  Google Scholar 

  • Koob GF (2003) Alcoholism: allostasis and beyond. Alcohol: Clin Exp Res 27:232–243

    CAS  Google Scholar 

  • Koob GF (2004) Allostatic view of motivation: implications for psychopathology. In: Bevins RA, Bardo MT (eds) Motivational factors in the etiology of drug abuse (series title: nebraska symposium on motivation, vol 50). University of Nebraska Press, Lincoln NE, pp 1–18

    Google Scholar 

  • Koob GF (2008a) A role for brain stress systems in addiction. Neuron 59:11–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koob GF (2008b) Neurobiology of addiction. In: Galanter M, Kleber HD (eds) Textbook of substance abuse treatment, 4th edn. American Psychiatric Publishing, Washington DC, pp 3–16

    Google Scholar 

  • Koob GF,Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O’Dell LE, Parsons LH, Sanna PP (1994) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 27:739–749

    Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    CAS  PubMed  Google Scholar 

  • Koob GF, Everitt BJ, Robbins TW (2008) Reward, motivation, and addiction. In: Squire LG, Berg D, Bloom FE, Du Lac S, Ghosh A, Spitzer N (eds) Fundamental Neuroscience, 3rd edition. Academic Press, Amsterdam, pp 987–1016

    Google Scholar 

  • Koob GF, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164:1149–1159

    PubMed Central  PubMed  Google Scholar 

  • Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nature Neurosci 8:1442–1444

    CAS  PubMed  Google Scholar 

  • Koob GF, Le Moal M (2006) Neurobiology of addiction. Academic Press, London

    Google Scholar 

  • Koob GF, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53

    PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacol Rev 35:217–238 [erratum:35:1051]

    Google Scholar 

  • Koob GF, Winger GD, Meyerhoff JL, Annau Z (1977) Effects of D-amphetamine on concurrent self-stimulation of forebrain and brain stem loci. Brain Res 137:109–126

    CAS  PubMed  Google Scholar 

  • Koob GF, Lloyd GK, Mason BJ (2009) Development of pharmacotherapies for drug addiction: a Rosetta stone approach. Nature Rev Drug Discov 8:500–515

    CAS  Google Scholar 

  • Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    CAS  PubMed  Google Scholar 

  • Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. J Neurosci 28:407–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Doux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    CAS  Google Scholar 

  • Logan GD, Schachar RJ, Tannock R (1997) Impulsivity and inhibitory control. Psychol Sci 8:60–64

    Google Scholar 

  • Lopez MF, Becker HC (2005) Effect of pattern and number of chronic ethanol exposures on subsequent voluntary ethanol intake in C57BL/6J mice. Psychopharmacology 181:688–696

    CAS  PubMed  Google Scholar 

  • Majchrowicz E (1975) Induction of physical dependence upon ethanol and the associated behavioral changes in rats. Psychopharmacologia 43:245–254

    CAS  PubMed  Google Scholar 

  • Markou A, Koob GF (1991) Post-cocaine anhedonia: an animal model of cocaine withdrawal. Neuropsychopharmacology 4:17–26

    CAS  PubMed  Google Scholar 

  • Martin-Solch C, Magyar S, Kunig G, Missimer J, Schultz W, Leenders KL (2001) Changes in brain activation associated with reward processing in smokers and nonsmokers: a positron emission tomography study. Exp Brain Res 139:278–286

    CAS  PubMed  Google Scholar 

  • McBride WJ, Li TK (1998) Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit Rev Neurobiol 12:339–369

    CAS  PubMed  Google Scholar 

  • McEwen BS (2000) Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology 22:108–124

    CAS  PubMed  Google Scholar 

  • Melis M, Spiga S, Diana M (2005) The dopamine hypothesis of drug addiction: hypodopaminergic state. Int Rev Neurobiol 63:101–154

    CAS  PubMed  Google Scholar 

  • Merlo-Pich E, Lorang M, Yeganeh M, Rodriguez de Fonseca F, Raber J, Koob GF, Weiss F (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 15:5439–5447

    CAS  PubMed  Google Scholar 

  • Mhatre MC, Pena G, Sieghart W, Ticku MK (1993) Antibodies specific for GABAA receptor alpha subunits reveal that chronic alcohol treatment down-regulates α-subunit expression in rat brain regions. J Neurochem 61:1620–1625

    CAS  PubMed  Google Scholar 

  • Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158:1783–1793

    CAS  PubMed  Google Scholar 

  • Morzorati SL, Ramchandani VA, Flury L, Li TK, O’Connor S (2002) Self-reported subjective perception of intoxication reflects family history of alcoholism when breath alcohol levels are constant. Alcohol: Clin Exp Res 26:1299–1306

    Google Scholar 

  • Moy SS, Knapp DJ, Criswell HE, Breese GR (1997) Flumazenil blockade of anxiety following ethanol withdrawal in rats. Psychopharmacology 131:354–360

    CAS  PubMed  Google Scholar 

  • Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86:274–280

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nature Rev Neurosci 2:119–128

    CAS  Google Scholar 

  • Nestler EJ (2004) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25:210–218

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nature Neurosci 8:1445–1449

    CAS  PubMed  Google Scholar 

  • Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10:221–234

    PubMed  Google Scholar 

  • O’Dell LE, Roberts AJ, Smith RT, Koob GF (2004) Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol: Clin Exp Res 28:1676–1682

    Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    CAS  PubMed  Google Scholar 

  • Olive MF, Koenig HN, Nannini MA, Hodge CW (2002) Elevated extracellular CRF levels in the bed nucleus of the stria terminalis during ethanol withdrawal and reduction by subsequent ethanol intake. Pharmacol Biochem Behav 72:213–220

    CAS  PubMed  Google Scholar 

  • Overstreet DH, Knapp DJ, Breese GR (2004) Modulation of multiple ethanol withdrawal-induced anxiety-like behavior by CRF and CRF1 receptors. Pharmacol Biochem Behav 77:405–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Overstreet DH, Knapp DJ, Breese GR (2005) Pharmacological modulation of repeated ethanol withdrawal-induced anxiety-like behavior differs in alcohol-preferring P and Sprague-Dawley rats. Pharmacol Biochem Behav 81:122–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandey SC (2004) The gene transcription factor cyclic AMP-responsive element binding protein: role in positive and negative affective states of alcohol addiction. Pharmacol Ther 104:47–58

    CAS  PubMed  Google Scholar 

  • Paterson NE, Myers C, Markou A (2000) Effects of repeated withdrawal from continuous amphetamine administration on brain reward function in rats. Psychopharmacology 152:440–446

    CAS  PubMed  Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by κ opiate receptors. Science 233:774–776

    CAS  PubMed  Google Scholar 

  • Piazza PV, Le Moal M (1998) The role of stress in drug self-administration. Trends Pharmacol Sci 19:67–74

    CAS  PubMed  Google Scholar 

  • Potokar J, Coupland N, Glue P, Groves S, Malizia A, Bailey J, Wilson S, Nutt D (1997) Flumazenil in alcohol withdrawal: a double-blind placebo-controlled study. Alcohol Alcoholism 32:605–611

    CAS  PubMed  Google Scholar 

  • Rachlin H, Green L (1972) Commitment, choice and self-control. J Exp Anal Behav 17:15–22

    CAS  PubMed  Google Scholar 

  • Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R, Eskay R, Schoor M, Thorsell A, Schwandt ML, Sommer WH, George DT, Parsons LH, Herscovitch P, Hommer D, Heilig M (2010) A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry (in press)

    Google Scholar 

  • Rasmussen DD, Boldt BM, Bryant CA, Mitton DR, Larsen SA, Wilkinson CW (2000) Chronic daily ethanol and withdrawal: 1. Long-term changes in the hypothalamo-pituitary-adrenal axis. Alcohol: Clin Exp Res 24:1836–1849

    CAS  Google Scholar 

  • Rassnick S, Heinrichs SC, Britton KT, Koob GF (1993) Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res 605:25–32

    CAS  PubMed  Google Scholar 

  • Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 84:53–63

    CAS  PubMed  Google Scholar 

  • Richardson HN, Zhao Y, Fekete EM, Funk CK, Wirsching P, Janda KD, Zorrilla EP, Koob GF (2008) MPZP: a novel small molecule corticotropin-releasing factor type 1 receptor (CRF1) antagonist. Pharmacol Biochem Behav 88:497–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rimondini R, Arlinde C, Sommer W, Heilig M (2002) Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J 16:27–35

    CAS  PubMed  Google Scholar 

  • Rivier C, Bruhn T, Vale W (1984) Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF). J Pharmacol Exp Ther 229:127–131

    CAS  PubMed  Google Scholar 

  • Roberto M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M, Cottone P, Madamba SG, Stouffer DG, Zorrilla EP, Koob GF, Siggins GR, Parsons LH (2010) Corticotropin releasing factor-induced amygdala gamma-aminobutyric acid release plays a key role in alcohol dependence. Biol Psychiatry 67:831–839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts AJ, Cole M, Koob GF (1996) Intra-amygdala muscimol decreases operant ethanol self-administration in dependent rats. Alcohol: Clin Exp Res 20:1289–1298

    CAS  Google Scholar 

  • Roberts AJ, Heyser CJ, Koob GF (1999) Operant self-administration of sweetened versus unsweetened ethanol: effects on blood alcohol levels. Alcohol: Clin Exp Res 23:1151–1157

    CAS  Google Scholar 

  • Roberts AJ, Heyser CJ, Cole M, Griffin P, Koob GF (2000) Excessive ethanol drinking following a history of dependence: animal model of allostasis. Neuropsychopharmacology 22:581–594

    CAS  PubMed  Google Scholar 

  • Romach MK, Sellers EM (1991) Management of the alcohol withdrawal syndrome. Annu Rev Med 42:323–340

    CAS  PubMed  Google Scholar 

  • Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234

    CAS  PubMed  Google Scholar 

  • Rossetti ZL, Isola D, De Vry J, Fadda F (1999) Effects of nimodipine on extracellular dopamine levels in the rat nucleus accumbens in ethanol withdrawal. Neuropharmacology 38:1361–1369

    CAS  PubMed  Google Scholar 

  • Russell MAH (1976) What is dependence? In: Edwards G (ed) Drugs and drug dependence. Lexington Books, Lexington MA, pp 182–187

    Google Scholar 

  • Samson HH (1987) Initiation of ethanol-maintained behavior: a comparison of animal models and their implication to human drinking. In: Thompson T, Dews PB, Barrett JE (eds) Neurobehavioral Pharmacology (series title: Advances in Behavioral Pharmacology, vol 6). Lawrence Erlbaum, Hillsdale, NJ, pp 221–248

    Google Scholar 

  • Sapru MK, Diamond I, Gordon AS (1994) Adenosine receptors mediate cellular adaptation to ethanol in NG108–15 cells. J Pharmacol Exp Ther 271:542–548

    CAS  PubMed  Google Scholar 

  • Schulteis G, Liu J (2006) Brain reward deficits accompany withdrawal (hangover) from acute ethanol in rats. Alcohol 39:21–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulteis G, Markou A, Gold LH, Stinus L, Koob GF (1994) Relative sensitivity to naloxone of multiple indices of opiate withdrawal: a quantitative dose-response analysis. J Pharmacol Exp Ther 271:1391–1398

    CAS  PubMed  Google Scholar 

  • Schulteis G, Markou A, Cole M, Koob G (1995) Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci USA 92:5880–5884

    CAS  PubMed  Google Scholar 

  • Schulteis G, Hyytia P, Heinrichs SC, Koob GF (1996) Effects of chronic ethanol exposure on oral self-administration of ethanol or saccharin by Wistar rats. Alcohol: Clin Exp Res 20:164–171

    CAS  Google Scholar 

  • Shurman J, Koob GF, Gutstein H (2010) Hyperalgesia in pain treatment: an allostatic perspective. Pain Med

    Google Scholar 

  • Sifneos PE (1973) The prevalence of ‘alexithymic’ characteristics in psychosomatic patients. Psychother Psychosom 22:255–262

    CAS  PubMed  Google Scholar 

  • Solomon RL, Corbit JD (1974) An opponent-process theory of motivation: 1. Temporal dynamics of affect. Psychol Rev 81:119–145

    CAS  PubMed  Google Scholar 

  • Sommer WH, Rimondini R, Hansson AC, Hipskind PA, Gehlert DR, Barr CS, Heilig MA (2008) Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala crhr1 expression following a history of dependence. Biol Psychiatry 63:139–145

    PubMed  Google Scholar 

  • Song ZH, Takemori AE (1992) Stimulation by corticotropin-releasing factor of the release of immunoreactive dynorphin A from mouse spinal cords in vitro. Eur J Pharmacol 222:27–32

    CAS  PubMed  Google Scholar 

  • Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J (eds) Handbook of life stress. Cognition and health. Wiley, Chichester, pp 629–649

    Google Scholar 

  • Taylor GJ, Bagby RM (2000) An overview of the alexithymia construct. In: Bar-On R, Parker JDA (eds) The handbook of emotional intelligence: theory, development, assessment, and application at home, school, and in the workplace. Jossey-Bass, San Francisco, pp 40–67

    Google Scholar 

  • Thorsell A, Slawecki CJ, Ehlers CL (2005a) Effects of neuropeptide Y and corticotropin-releasing factor on ethanol intake in Wistar rats: interaction with chronic ethanol exposure. Behav Brain Res 161:133–140

    CAS  PubMed  Google Scholar 

  • Thorsell A, Slawecki CJ, Ehlers CL (2005b) Effects of neuropeptide Y on appetitive and consummatory behaviors associated with alcohol drinking in wistar rats with a history of ethanol exposure. Alcohol: Clin Exp Res 29:584–590

    CAS  Google Scholar 

  • Thorsell A, Rapunte-Canonigo V, O’Dell L, Chen SA, King A, Lekic D, Koob GF, Sanna PP (2007) Viral vector-induced amygdala NPY overexpression reverses increased alcohol intake caused by repeated deprivations in Wistar rats. Brain 130:1330–1337

    PubMed Central  PubMed  Google Scholar 

  • Trzaskowska E, Kostowski W (1983) Further studies on the role of noradrenergic mechanisms in ethanol withdrawal syndrome in rats. Pol J Pharmacol 35:351–358

    CAS  Google Scholar 

  • Valdez GR, Zorrilla EP, Roberts AJ, Koob GF (2003) Antagonism of corticotropin-releasing factor attenuates the enhanced responsiveness to stress observed during protracted ethanol abstinence. Alcohol 29:55–60

    CAS  PubMed  Google Scholar 

  • Valdez GR, Sabino V, Koob GF (2002) Increased anxiety-like behavior and ethanol self-administration in dependent rats: reversal via corticotropin-releasing factor-2 receptor activation. Alcohol: Clin Exp Res 26:1494–1501

    CAS  Google Scholar 

  • Valdez GR, Platt DM, Rowlett JK, Rüedi-Bettschen D, Spealman RD (2007) κ Agonist-induced reinstatement of cocaine seeking in squirrel monkeys: a role for opioid and stress-related mechanisms. J Pharmacol Exp Ther 323:525–533

    CAS  PubMed  Google Scholar 

  • Valentino RJ, Page ME, Curtis AL (1991) Activation of noradrenergic locus coeruleus neurons by hemodynamic stress is due to local release of corticotropin-releasing factor. Brain Res 555:25–34

    CAS  PubMed  Google Scholar 

  • Valentino RJ, Foote SL, Page ME (1993) The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. In: Tache Y, Rivier C (eds) Corticotropin-releasing factor and cytokines: role in the stress response (series title: Annals of the New York Academy of Sciences, vol 697). New York Academy of Sciences, New York, pp 173–188

    Google Scholar 

  • Van Bockstaele EJ, Colago EE, Valentino RJ (1998) Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the co-ordination of emotional and cognitive limbs of the stress response. J Neuroendocrinol 10:743–757

    PubMed  Google Scholar 

  • Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10:318–325

    CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ (2002) Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol 13:355–366

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Jayne M, Ma Y, Pradhan K, Wong C (2007) Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci 27:12700–12706

    CAS  PubMed  Google Scholar 

  • Walker BM, Koob GF (2008) Pharmacological evidence for a motivational role of κ-opioid systems in ethanol dependence. Neuropsychopharmacology 33:643–652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker BM, Rasmussen DD, Raskind MA, Koob GF (2008) α1-Noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol. Alcohol 42:91–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology 210:121–135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss F, Hurd YL, Ungerstedt U, Markou A, Plotsky PM, Koob GF (1992a) Neurochemical correlates of cocaine and ethanol self-administration. In: Kalivas PW, Samson HH (eds) The neurobiology of drug and alcohol addiction (series title: Annals of the New York Academy of Sciences, vol 654). New York Academy of Sciences, New York, pp 220–241

    Google Scholar 

  • Weiss F, Markou A, Lorang MT, Koob GF (1992b) Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res 593:314–318

    CAS  PubMed  Google Scholar 

  • Weiss F, Parsons LH, Schulteis G, Hyytia P, Lorang MT, Bloom FE, Koob GF (1996) Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 16:3474–3485

    CAS  PubMed  Google Scholar 

  • Wikler A (1952) A psychodynamic study of a patient during experimental self-regulated re-addiction to morphine. Psychiatric Q 26:270–293

    CAS  Google Scholar 

  • Wolffgramm J, Heyne A (1995) From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res 70:77–94

    CAS  PubMed  Google Scholar 

  • Zald DH, Kim SW (2001) The orbitofrontal cortex. In: Salloway SP, Malloy PF, Duffy JD (eds) The frontal lobes and neuropsychiatric illness. American Psychiatric Press, Washington, DC, pp 33–70

    Google Scholar 

  • Zorrilla EP, Valdez GR, Weiss F (2001) Changes in levels of regional CRF-like-immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Psychopharmacology 158:374–381

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Michael Arends for assistance with manuscript preparation and editing. Research was supported by National Institutes of Health grants AA06420 and AA08459 from the National Institute on Alcohol Abuse and Alcoholism and the Pearson Center for Alcoholism and Addiction Research. This is publication number 20763 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Koob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koob, G.F. (2011). Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit Disorder. In: Sommer, W., Spanagel, R. (eds) Behavioral Neurobiology of Alcohol Addiction. Current Topics in Behavioral Neurosciences, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28720-6_129

Download citation

Publish with us

Policies and ethics