Skip to main content

Nipah and Hendra Virus Interactions with the Innate Immune System

  • Chapter
  • First Online:
Book cover Henipavirus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 359))

Abstract

Nipah virus and Hendra virus are related, highly pathogenic paramyxoviruses with unusually broad host ranges. Henipaviruses encode several proteins that block innate immune responses, and these are likely to serve as virulence factors. Specfically, four virus-encoded proteins, the phosphoprotein (P), the V protein, the W protein, and the C protein have each been demonstrated to counteract aspects of the interferon (IFN)-α/β response, a key component of the innate immune response to virus infection. The available data indicate that V and W can inhibit the production of IFNα/β in response to various stimuli, while the P, V, and W proteins also block the ability of IFNs to signal and induce an antiviral state in cells. The C protein also inhibits the antiviral effects of IFNα/β by a poorly characterized mechanism. Reverse genetics systems, which allow the generation of recombinant viruses bearing specific mutations, have demonstrated the importance of the viral IFN-antagonists for replication. With these systems in hand, the field is now poised to define how specific viral IFN-antagonist functions influence viral pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, Randall RE (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, MDA-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101:17264–17269

    CAS  PubMed  Google Scholar 

  • Baum A, Sachidanandam R, Garcia-Sastre A (2010) Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci U S A 107:16303–16308

    CAS  PubMed  Google Scholar 

  • Biron CA (2001) Interferons alpha and beta as immune regulators—a new look. Immunity 14:661–664

    CAS  PubMed  Google Scholar 

  • Bousse T, Chambers RL, Scroggs RA, Portner A, Takimoto T (2006) Human parainfluenza virus type 1 but not Sendai virus replicates in human respiratory cells despite IFN treatment. Virus Res 121:23–32

    CAS  PubMed  Google Scholar 

  • Boxer EL, Nanda SK, Baron MD (2009) The rinderpest virus non-structural C protein blocks the induction of type 1 interferon. Virology 385:134–142

    CAS  PubMed  Google Scholar 

  • Caignard G, Guerbois M, Labernardiere JL, Jacob Y, Jones LM, Wild F, Tangy F, Vidalain PO (2007) Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-alpha/beta signaling. Virology 368:351–362

    CAS  PubMed  Google Scholar 

  • Caignard G, Bourai M, Jacob Y, Tangy F, Vidalain PO (2009a) Inhibition of IFN-alpha/beta signaling by two discrete peptides within measles virus V protein that specifically bind STAT1 and STAT2. Virology 383:112–120

    CAS  PubMed  Google Scholar 

  • Caignard G, Komarova AV, Bourai M, Mourez T, Jacob Y, Jones LM, Rozenberg F, Vabret A, Freymuth F, Tangy F, Vidalain PO (2009b) Differential regulation of type I interferon and epidermal growth factor pathways by a human Respirovirus virulence factor. PLoS Pathog 5:e1000587

    PubMed  Google Scholar 

  • Chambers R, Takimoto T (2009a) Host specificity of the anti-interferon and anti-apoptosis activities of parainfluenza virus P/C gene products. J Gen Virol 90:1906–1915

    CAS  PubMed  Google Scholar 

  • Chambers R, Takimoto T (2009b) Antagonism of innate immunity by paramyxovirus accessory proteins. Viruses 1:574–593

    CAS  PubMed  Google Scholar 

  • Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R, Goodbourn S (2007) mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359:190–200

    CAS  PubMed  Google Scholar 

  • Childs KS, Andrejeva J, Randall RE, Goodbourn S (2009) Mechanism of mda-5 Inhibition by paramyxovirus V proteins. J Virol 83:1465–1473

    CAS  PubMed  Google Scholar 

  • Ciancanelli MJ, Volchkova VA, Shaw ML, Volchkov VE, Basler CF (2009) Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. J Virol

    Google Scholar 

  • Crameri G, Todd S, Grimley S, McEachern JA, Marsh GA, Smith C, Tachedjian M, De Jong C, Virtue ER, Yu M, Bulach D, Liu JP, Michalski WP, Middleton D, Field HE, Wang LF (2009) Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS ONE 4:e8266

    PubMed  Google Scholar 

  • Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83

    CAS  PubMed  Google Scholar 

  • Didcock L, Young DF, Goodbourn S, Randall RE (1999) The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73:9928–9933

    CAS  PubMed  Google Scholar 

  • Fontana JM, Bankamp B, Bellini WJ, Rota PA (2008) Regulation of interferon signaling by the C and V proteins from attenuated and wild-type strains of measles virus. Virology 374: 71–81

    Google Scholar 

  • Gale M Jr, Sen GC (2009) Viral evasion of the interferon system. J Interferon Cytokine Res 29:475–476

    CAS  PubMed  Google Scholar 

  • Garcin D, Latorre P, Kolakofsky D (1999) Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state. J Virol 73:6559–6565

    CAS  PubMed  Google Scholar 

  • Garcin D, Curran J, Kolakofsky D (2000) Sendai virus C proteins must interact directly with cellular components to interfere with interferon action. J Virol 74:8823–8830

    CAS  PubMed  Google Scholar 

  • Garcin D, Curran J, Itoh M, Kolakofsky D (2001) Longer and shorter forms of Sendai virus C proteins play different roles in modulating the cellular antiviral response. J Virol 75:6800–6807

    CAS  PubMed  Google Scholar 

  • Garcin D, Marq JB, Goodbourn S, Kolakofsky D (2003) The amino-terminal extensions of the longer Sendai virus C proteins modulate pY701-Stat1 and bulk Stat1 levels independently of interferon signaling. J Virol 77:2321–2329

    CAS  PubMed  Google Scholar 

  • Georges-Courbot MC, Contamin H, Faure C, Loth P, Baize S, Leyssen P, Neyts J, Deubel V (2006) Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob Agents Chemother 50:1768–1772

    CAS  PubMed  Google Scholar 

  • Gonzalez-Navajas JM, Lee J, David M, Raz E (2010) Immunomodulatory functions of type I interferons. Nat Rev Immunol

    Google Scholar 

  • Goodbourn S, Randall RE (2009) The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 29:539–547

    CAS  PubMed  Google Scholar 

  • Gotoh B, Takeuchi K, Komatsu T, Yokoo J, Kimura Y, Kurotani A, Kato A, Nagai Y (1999) Knockout of the Sendai virus C gene eliminates the viral ability to prevent the interferon-alpha/beta-mediated responses. FEBS Lett 459:205–210

    CAS  PubMed  Google Scholar 

  • Gotoh B, Takeuchi K, Komatsu T, Yokoo J (2003) The STAT2 activation process is a crucial target of Sendai virus C protein for the blockade of alpha interferon signaling. J Virol 77:3360–3370

    CAS  PubMed  Google Scholar 

  • Habjan M, Andersson I, Klingstrom J, Schumann M, Martin A, Zimmermann P, Wagner V, Pichlmair A, Schneider U, Muhlberger E, Mirazimi A, Weber F (2008) Processing of genome 5’ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 3:e2032

    PubMed  Google Scholar 

  • Hagmaier K, Stock N, Goodbourn S, Wang LF, Randall R (2006) A single amino acid substitution in the V protein of Nipah virus alters its ability to block interferon signalling in cells from different species. J Gen Virol 87:3649–3653

    CAS  PubMed  Google Scholar 

  • Hagmaier K, Stock N, Precious B, Childs K, Wang LF, Goodbourn S, Randall RE (2007) Mapuera virus, a rubulavirus that inhibits interferon signalling in a wide variety of mammalian cells without degrading STATs. J Gen Virol 88:956–966

    CAS  PubMed  Google Scholar 

  • Halpin K, Bankamp B, Harcourt BH, Bellini WJ, Rota PA (2004) Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 85:701–707

    CAS  PubMed  Google Scholar 

  • Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, Rota PA (2000) Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271:334–349

    CAS  PubMed  Google Scholar 

  • He B, Paterson RG, Stock N, Durbin JE, Durbin RK, Goodbourn S, Randall RE, Lamb RA (2002) Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain: the multifunctional V protein blocks both interferon-beta induction and interferon signaling. Virology 303:15–32

    CAS  PubMed  Google Scholar 

  • Hoebe K, Beutler B (2004) LPS, dsRNA and the interferon bridge to adaptive immune responses: Trif, Tram, and other TIR adaptor proteins. J Endotoxin Res 10:130–136

    CAS  PubMed  Google Scholar 

  • Huang Z, Krishnamurthy S, Panda A, Samal SK (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77:8676–8685

    CAS  PubMed  Google Scholar 

  • Jensen S, Thomsen AR (2012) Sensing of RNA viruses-A review on innate immune receptors invovled in recognizing RNA virus invasion. J Virol 86:2900–2910

    CAS  PubMed  Google Scholar 

  • Kato A, Ohnishi Y, Kohase M, Saito S, Tashiro M, Nagai Y (2001) Y2, the smallest of the Sendai virus C proteins, is fully capable of both counteracting the antiviral action of interferons and inhibiting viral RNA synthesis. J Virol 75:3802–3810

    CAS  PubMed  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988

    CAS  PubMed  Google Scholar 

  • Komatsu T, Takeuchi K, Yokoo J, Tanaka Y, Gotoh B (2000) Sendai virus blocks alpha interferon signaling to signal transducers and activators of transcription [in process citation]. J Virol 74:2477–2480

    CAS  PubMed  Google Scholar 

  • Komatsu T, Takeuchi K, Yokoo J, Gotoh B (2002) Sendai virus C protein impairs both phosphorylation and dephosphorylation processes of Stat1. FEBS Lett 511:139–144

    CAS  PubMed  Google Scholar 

  • Komatsu T, Takeuchi K, Yokoo J, Gotoh B (2004) C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon-beta production. Virology 325:137–148

    CAS  PubMed  Google Scholar 

  • Komatsu T, Takeuchi K, Gotoh B (2007) Bovine parainfluenza virus type 3 accessory proteins that suppress beta interferon production. Microbes Infect 9:954–962

    CAS  PubMed  Google Scholar 

  • Ksiazek TG, Rota PA, Rollin PE (2011) A review of Nipah and Hendra viruses with an historical aside. Virus Res 162:173–183

    CAS  PubMed  Google Scholar 

  • Kubota T, Yokosawa N, Yokota S, Fujii N (2001) C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon alpha and gamma signal transduction pathway through decrease of STAT 1-alpha. Biochem Biophys Res Commun 283:255–259

    CAS  PubMed  Google Scholar 

  • Kubota T, Yokosawa N, Yokota S, Fujii N (2002) Association of mumps virus V protein with RACK1 results in dissociation of STAT-1 from the alpha interferon receptor complex. J Virol 76:12676–12682

    CAS  PubMed  Google Scholar 

  • Kulkarni S, Volchkova V, Basler CF, Palese P, Volchkov VE, Shaw ML (2009) Nipah virus edits its P gene at high frequency to express the V and W proteins. J Virol 83:3982–3987

    CAS  PubMed  Google Scholar 

  • Lamb RA, Parks GD (2007) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology, 5th edn, vol 1. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Li T, Chen X, Garbutt KC, Zhou P, Zheng N (2006) Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105–117

    CAS  PubMed  Google Scholar 

  • Liston P, Briedis DJ (1994) Measles virus V protein binds zinc. Virology 198:399–404

    CAS  PubMed  Google Scholar 

  • Lo MK, Harcourt BH, Mungall BA, Tamin A, Peeples ME, Bellini WJ, Rota PA (2009) Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells. J Gen Virol 90:398–404

    CAS  PubMed  Google Scholar 

  • Lo MK, Miller D, Aljofan M, Mungall BA, Rollin PE, Bellini WJ, Rota PA (2010) Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 404:78–88

    CAS  PubMed  Google Scholar 

  • Lu LL, Puri M, Horvath CM, Sen GC (2008) Select paramyxoviral V proteins inhibit IRF3 activation by acting as alternative substrates for inhibitor of kappaB kinase epsilon (IKKe)/TBK1. J Biol Chem 283:14269–14276

    CAS  PubMed  Google Scholar 

  • Ludlow LE, Lo MK, Rodriguez JJ, Rota PA, Horvath CM (2008) Henipavirus V protein association with Polo-like kinase reveals functional overlap with STAT1 binding and interferon evasion. J Virol 82:6259–6271

    CAS  PubMed  Google Scholar 

  • Malur AG, Chattopadhyay S, Maitra RK, Banerjee AK (2005) Inhibition of STAT 1 phosphorylation by human parainfluenza virus type 3 C protein. J Virol 79:7877–7882

    CAS  PubMed  Google Scholar 

  • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–1172

    CAS  PubMed  Google Scholar 

  • Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW (2007) Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 136:266–272

    CAS  PubMed  Google Scholar 

  • Nishio M, Garcin D, Simonet V, Kolakofsky D (2002) The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif. Virology 300:92–99

    CAS  PubMed  Google Scholar 

  • Nishio M, Tsurudome M, Ito M, Garcin D, Kolakofsky D, Ito Y (2005a) Identification of paramyxovirus V protein residues essential for STAT protein degradation and promotion of virus replication. J Virol 79:8591–8601

    CAS  PubMed  Google Scholar 

  • Nishio M, Tsurudome M, Ito M, Ito Y (2005b) Human parainfluenza virus type 4 is incapable of evading the interferon-induced antiviral effect. J Virol 79:14756–14768

    CAS  PubMed  Google Scholar 

  • Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y (2004) Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85:2991–2999

    CAS  PubMed  Google Scholar 

  • O’Neill LA, Bowie AG (2011) The powerstroke and camshaft of the RIG-I antiviral RNA detection machine. Cell 147:259–261

    PubMed  Google Scholar 

  • Palosaari H, Parisien JP, Rodriguez JJ, Ulane CM, Horvath CM (2003) STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644

    CAS  PubMed  Google Scholar 

  • Parisien JP, Lau JF, Rodriguez JJ, Sullivan BM, Moscona A, Parks GD, Lamb RA, Horvath CM (2001) The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283:230–239

    CAS  PubMed  Google Scholar 

  • Parisien JP, Lau JF, Horvath CM (2002a) STAT2 Acts as a Host Range Determinant for Species-Specific Paramyxovirus Interferon Antagonism and Simian Virus 5 Replication. J Virol 76:6435–6441

    CAS  PubMed  Google Scholar 

  • Parisien JP, Lau JF, Rodriguez JJ, Ulane CM, Horvath CM (2002b) Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of alpha/beta interferon signal transduction. J Virol 76:4190–4198

    CAS  PubMed  Google Scholar 

  • Parisien JP, Bamming D, Komuro A, Ramachandran A, Rodriguez JJ, Barber G, Wojahn RD, Horvath CM (2009) A shared interface mediates paramyxovirus interference with antiviral RNA helicases MDA5 and LGP2. J Virol 83:7252–7260

    CAS  PubMed  Google Scholar 

  • Park M-S, Shaw ML, Munoz-Jordan J, Cros JF, Nakaya T, Bouvier N, Palese P, Garcia-Sastre A, Basler CF (2003) Newcastle Disease Virus (NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V, W, and C Proteins. J Virol 77:1501–1511

    CAS  PubMed  Google Scholar 

  • Paterson RG, Leser GP, Shaughnessy MA, Lamb RA (1995) The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions. Virology 208:121–131

    CAS  PubMed  Google Scholar 

  • Pfaller CK, Conzelmann KK (2008) Measles virus V protein is a decoy substrate for IkappaB kinase alpha and prevents Toll-like receptor 7/9-mediated interferon induction. J Virol 82:12365–12373

    CAS  PubMed  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    CAS  PubMed  Google Scholar 

  • Poole E, He B, Lamb RA, Randall RE, Goodbourn S (2002) The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-beta. Virology 303:33–46

    CAS  PubMed  Google Scholar 

  • Precious B, Childs K, Fitzpatrick-Swallow V, Goodbourn S, Randall RE (2005a) Simian virus 5 V protein acts as an adaptor, linking DDB1 to STAT2, to facilitate the ubiquitination of STAT1. J Virol 79:13434–13441

    CAS  PubMed  Google Scholar 

  • Precious B, Young DF, Andrejeva L, Goodbourn S, Randall RE (2005b) In vitro and in vivo specificity of ubiquitination and degradation of STAT1 and STAT2 by the V proteins of the paramyxoviruses simian virus 5 and human parainfluenza virus type 2. J Gen Virol 86:151–158

    CAS  PubMed  Google Scholar 

  • Precious BL, Carlos TS, Goodbourn S, Randall RE (2007) Catalytic turnover of STAT1 allows PIV5 to dismantle the interferon-induced anti-viral state of cells. Virology 368:114–121

    CAS  PubMed  Google Scholar 

  • Ramachandran A, Horvath CM (2009) Paramyxovirus disruption of interferon signal transduction: STATus report. J Interferon Cytokine Res 29:531–537

    CAS  PubMed  Google Scholar 

  • Ramachandran A, Horvath CM (2010) Dissociation of paramyxovirus interferon evasion activities: universal and virus-specific requirements for conserved V protein amino acids in MDA5 interference. J Virol 84:11152–11163

    CAS  PubMed  Google Scholar 

  • Ramachandran A, Parisien JP, Horvath CM (2008) STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J Virol 82:8330–8338

    CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Parisien JP, Horvath CM (2002) Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J Virol 76:11476–11483

    CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Wang LF, Horvath CM (2003) Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation. J Virol 77:11842–11845

    CAS  PubMed  Google Scholar 

  • Rodriguez JJ, Cruz CD, Horvath CM (2004) Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J Virol 78:5358–5367

    CAS  PubMed  Google Scholar 

  • Saito S, Ogino T, Miyajima N, Kato A, Kohase M (2002) Dephosphorylation failure of tyrosine-phosphorylated STAT1 in IFN- stimulated Sendai virus C protein-expressing cells. Virology 293:205–209

    CAS  PubMed  Google Scholar 

  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr (2008) Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:523–527

    CAS  PubMed  Google Scholar 

  • Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald KA, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J, Hartmann G (2009) Recognition of 5’ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34

    CAS  PubMed  Google Scholar 

  • Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, Wenzel M, Hoffmann FS, Michallet MC, Besch R, Hopfner KP, Endres S, Rothenfusser S (2009) 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci U S A 106:12067–12072

    CAS  PubMed  Google Scholar 

  • Schuhmann KM, Pfaller CK, Conzelmann KK (2011) The measles virus V protein binds to p65 (RelA) to suppress NF-kappaB activity. J Virol 85: 3162–3171

    Google Scholar 

  • Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682

    CAS  PubMed  Google Scholar 

  • Seto J, Qiao L, Guenzel CA, Xiao S, Shaw ML, Hayot F, Sealfon SC (2010) Novel Nipah virus immune-antagonism strategy revealed by experimental and computational study. J Virol 84:10965–10973

    CAS  PubMed  Google Scholar 

  • Shaffer JA, Bellini WJ, Rota PA (2003) The C protein of measles virus inhibits the type I interferon response. Virology 315:389–397

    CAS  PubMed  Google Scholar 

  • Shaw ML, Garcia-Sastre A, Palese P, Basler CF (2004) Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 78:5633–5641

    CAS  PubMed  Google Scholar 

  • Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF (2005) Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J Virol 79:6078–6088

    CAS  PubMed  Google Scholar 

  • Sleeman K, Bankamp B, Hummel KB, Lo MK, Bellini WJ, Rota PA (2008) The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 89:1300–1308

    CAS  PubMed  Google Scholar 

  • Sparrer KM, Pfaller CK, Conzelmann KK (2012) Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol 86: 796–805

    Google Scholar 

  • Strahle L, Garcin D, Kolakofsky D (2006) Sendai virus defective-interfering genomes and the activation of interferon-beta. Virology 351:101–111

    CAS  PubMed  Google Scholar 

  • Sun D, Luthra P, Li Z, He B (2009) PLK1 down-regulates parainfluenza virus 5 gene expression. PLoS Pathog 5:e1000525

    PubMed  Google Scholar 

  • Takeuchi K, Komatsu T, Yokoo J, Kato A, Shioda T, Nagai Y, Gotoh B (2001) Sendai virus C protein physically associates with Stat1. Genes Cells 6:545–557

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Kadota SI, Takeda M, Miyajima N, Nagata K (2003) Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545:177–182

    CAS  PubMed  Google Scholar 

  • Ulane CM, Horvath CM (2002) Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304:160–166

    CAS  PubMed  Google Scholar 

  • Ulane CM, Rodriguez JJ, Parisien JP, Horvath CM (2003) STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J Virol 77:6385–6393

    CAS  PubMed  Google Scholar 

  • Ulane CM, Kentsis A, Cruz CD, Parisien JP, Schneider KL, Horvath CM (2005) Composition and assembly of STAT-targeting ubiquitin ligase complexes: paramyxovirus V protein carboxyl terminus is an oligomerization domain. J Virol 79:10180–10189

    CAS  PubMed  Google Scholar 

  • Van Cleve W, Amaro-Carambot E, Surman SR, Bekisz J, Collins PL, Zoon KC, Murphy BR, Skiadopoulos MH, Bartlett EJ (2006) Attenuating mutations in the P/C gene of human parainfluenza virus type 1 (HPIV1) vaccine candidates abrogate the inhibition of both induction and signaling of type I interferon (IFN) by wild-type HPIV1. Virology 352:61–73

    PubMed  Google Scholar 

  • Virtue ER, Marsh GA, Baker ML, Wang LF (2011a) Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines. PLoS One 6:e22488

    CAS  PubMed  Google Scholar 

  • Virtue ER, Marsh GA, Wang LF (2011b) Interferon signaling remains functional during henipavirus infection of human cell lines. J Virol 85:4031–4034

    CAS  PubMed  Google Scholar 

  • Wang LF, Michalski WP, Yu M, Pritchard LI, Crameri G, Shiell B, Eaton BT (1998) A novel P/V/C gene in a new member of the Paramyxoviridae family, which causes lethal infection in humans, horses, and other animals. J Virol 72:1482–1490

    CAS  PubMed  Google Scholar 

  • Wang YE, Park A, Lake M, Pentecost M, Torres B, Yun TE, Wolf MC, Holbrook MR, Freiberg AN, Lee B (2010) Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. PLoS Pathog 6:e1001186

    PubMed  Google Scholar 

  • Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, Loth P, Georges-Courbot MC, Chevallier M, Akaoka H, Marianneau P, Lam SK, Wild TF, Deubel V (2003) A golden hamster model for human acute Nipah virus infection. Am J Pathol 163:2127–2137

    PubMed  Google Scholar 

  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19:727–740

    CAS  PubMed  Google Scholar 

  • Yokosawa N, Yokota S, Kubota T, Fujii N (2002) C-terminal region of STAT-1alpha is not necessary for its ubiquitination and degradation caused by mumps virus V protein. J Virol 76:12683–12690

    CAS  PubMed  Google Scholar 

  • Yokota S, Saito H, Kubota T, Yokosawa N, Amano K, Fujii N (2003) Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-alpha receptor complex. Virology 306:135–146

    CAS  PubMed  Google Scholar 

  • Yokota S, Okabayashi T, Yokosawa N, Fujii N (2008) Measles virus P protein suppresses Toll-like receptor signal through up-regulation of ubiquitin-modifying enzyme A20. FASEB J 22:74–83

    CAS  PubMed  Google Scholar 

  • Yoneda M, Fujita K, Sato H, Kai C (2009) Reverse genetics of Nipah virus to probe viral pathogenicity. Methods Mol Biol 515:329–337

    CAS  PubMed  Google Scholar 

  • Yoneda M, Guillaume V, Sato H, Fujita K, Georges-Courbot MC, Ikeda F, Omi M, Muto-Terao Y, Wild TF, Kai C (2010) The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLoS ONE 5:e12709

    PubMed  Google Scholar 

  • Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65

    CAS  PubMed  Google Scholar 

  • Yoneyama M, Fujita T, Wang R (2012) Cytoplasmic sensing of viral double-stranded RNA and activation of innate immunity by RIG-I-like receptors innate immune regulation and cancer imunotherapy. Springer, New York, pp 51–60

    Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    CAS  PubMed  Google Scholar 

  • Young DF, Didcock L, Goodbourn S, Randall RE (2000) Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 269:383–390

    CAS  PubMed  Google Scholar 

  • Young DF, Chatziandreou N, He B, Goodbourn S, Lamb RA, Randall RE (2001) Single amino acid substitution in the V protein of simian virus 5 differentiates its ability to block interferon signaling in human and murine cells. J Virol 75:3363–3370

    CAS  PubMed  Google Scholar 

  • Yount JS, Gitlin L, Moran TM, Lopez CB (2008) MDA5 participates in the detection of paramyxovirus infection and is essential for the early activation of dendritic cells in response to Sendai virus defective interfering particles. J Immunol 180:4910–4918

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher F. Basler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basler, C.F. (2012). Nipah and Hendra Virus Interactions with the Innate Immune System. In: Lee, B., Rota, P. (eds) Henipavirus. Current Topics in Microbiology and Immunology, vol 359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_209

Download citation

Publish with us

Policies and ethics