Skip to main content

Modeling of Multimolecular Complexes

  • Protocol
  • First Online:
Structural Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2112))

Abstract

Macromolecular complexes play a key role in cellular function. Predicting the structure and dynamics of these complexes is one of the key challenges in structural biology. Docking applications have traditionally been used to predict pairwise interactions between proteins. However, few methods exist for modeling multi-protein assemblies. Here we present two methods, CombDock and DockStar, that can predict multi-protein assemblies starting from subunit structural models. CombDock can assemble subunits without any assumptions about the pairwise interactions between subunits, while DockStar relies on the interaction graph or, alternatively, a homology model or a cryo-electron microscopy (EM) density map of the entire complex. We demonstrate the two methods using RNA polymerase II with 12 subunits and TRiC/CCT chaperonin with 16 subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson CV, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450(7172):973–982. https://doi.org/10.1038/nature06523. nature06523 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565. https://doi.org/10.1038/msb.2011.99

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fraser JS, Gross JD, Krogan NJ (2013) From systems to structure: bridging networks and mechanism. Mol Cell 49(2):222–231. https://doi.org/10.1016/j.molcel.2013.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9(1):1–15

    Article  CAS  PubMed  Google Scholar 

  5. Ryan CJ, Cimermancic P, Szpiech ZA, Sali A, Hernandez RD, Krogan NJ (2013) High-resolution network biology: connecting sequence with function. Nat Rev Genet 14(12):865–879. https://doi.org/10.1038/nrg3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, Segura J, Fernandez-Fuentes N, Viswanath S, Elber R, Grudinin S, Popov P, Neveu E, Lee H, Baek M, Park S, Heo L, Rie Lee G, Seok C, Qin S, Zhou HX, Ritchie DW, Maigret B, Devignes MD, Ghoorah A, Torchala M, Chaleil RA, Bates PA, Ben-Zeev E, Eisenstein M, Negi SS, Weng Z, Vreven T, Pierce BG, Borrman TM, Yu J, Ochsenbein F, Guerois R, Vangone A, Rodrigues JP, van Zundert G, Nellen M, Xue L, Karaca E, Melquiond AS, Visscher K, Kastritis PL, Bonvin AM, Xu X, Qiu L, Yan C, Li J, Ma Z, Cheng J, Zou X, Shen Y, Peterson LX, Kim HR, Roy A, Han X, Esquivel-Rodriguez J, Kihara D, Yu X, Bruce NJ, Fuller JC, Wade RC, Anishchenko I, Kundrotas PJ, Vakser IA, Imai K, Yamada K, Oda T, Nakamura T, Tomii K, Pallara C, Romero-Durana M, Jimenez-Garcia B, Moal IH, Fernandez-Recio J, Joung JY, Kim JY, Joo K, Lee J, Kozakov D, Vajda S, Mottarella S, Hall DR, Beglov D, Mamonov A, Xia B, Bohnuud T, Del Carpio CA, Ichiishi E, Marze N, Kuroda D, Roy Burman SS, Gray JJ, Chermak E, Cavallo L, Oliva R, Tovchigrechko A, Wodak SJ (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins 84(Suppl 1):323–348. https://doi.org/10.1002/prot.25007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andre I, Bradley P, Wang C, Baker D (2007) Prediction of the structure of symmetrical protein assemblies. Proc Natl Acad Sci U S A 104(45):17656–17661. https://doi.org/10.1073/pnas.0702626104. 0702626104 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  8. Berchanski A, Eisenstein M (2003) Construction of molecular assemblies via docking: modeling of tetramers with D2 symmetry. Proteins 53(4):817–829. https://doi.org/10.1002/prot.10480

    Article  CAS  PubMed  Google Scholar 

  9. Pierce B, Tong W, Weng Z (2005) M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21(8):1472–1478. https://doi.org/10.1093/bioinformatics/bti229

    Article  CAS  PubMed  Google Scholar 

  10. Comeau SR, Camacho CJ (2005) Predicting oligomeric assemblies: N-mers a primer. J Struct Biol 150(3):233–244. https://doi.org/10.1016/j.jsb.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  11. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Geometry-based flexible and symmetric protein docking. Proteins 60(2):224–231. https://doi.org/10.1002/prot.20562

    Article  CAS  PubMed  Google Scholar 

  12. Karaca E, Melquiond AS, de Vries SJ, Kastritis PL, Bonvin AM (2010) Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multi-body docking server. Mol Cell Proteomics 9:1784. https://doi.org/10.1074/mcp.M000051-MCP201. M000051-MCP201 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  14. van Zundert GCP, Melquiond ASJ, Bonvin A (2015) Integrative modeling of biomolecular complexes: HADDOCKing with cryo-electron microscopy data. Structure 23(5):949–960. https://doi.org/10.1016/j.str.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  15. Esquivel-Rodríguez J, Yang YD, Kihara D (2012) Multi-LZerD: multiple protein docking for asymmetric complexes. Proteins 80(7):1818–1833

    PubMed  PubMed Central  Google Scholar 

  16. Kuzu G, Keskin O, Nussinov R, Gursoy A (2014) Modeling protein assemblies in the proteome. Mol Cell Proteomics 13:887–896. https://doi.org/10.1074/mcp.M113.031294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A (2012) Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol 10(1):e1001244. https://doi.org/10.1371/journal.pbio.1001244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Inbar Y, Benyamini H, Nussinov R, Wolfson HJ (2005) Prediction of multimolecular assemblies by multiple docking. J Mol Biol 349(2):435–447. https://doi.org/10.1016/j.jmb.2005.03.039. S0022-2836(05)00317-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Amir N, Cohen D, Wolfson HJ (2015) DockStar: a novel ILP-based integrative method for structural modeling of multimolecular protein complexes. Bioinformatics 31(17):2801–2807

    Article  PubMed  Google Scholar 

  20. Trnka MJ, Baker PR, Robinson PJ, Burlingame AL, Chalkley RJ (2014) Matching cross-linked peptide spectra: only as good as the worse identification. Mol Cell Proteomics 13(2):420–434. https://doi.org/10.1074/mcp.M113.034009

    Article  CAS  PubMed  Google Scholar 

  21. Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J (2010) Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J 29(4):717–726. https://doi.org/10.1038/emboj.2009.401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367. https://doi.org/10.1093/nar/gki481. 33/suppl_2/W363 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous alignment of multiple protein structures. Proteins 56:143–156

    Article  CAS  PubMed  Google Scholar 

  24. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Res 38(Web Server):W457–W461. https://doi.org/10.1093/nar/gkq373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martín-Benito J, Grantham J, Boskovic J, Brackley KI, Carrascosa JL, Willison KR, Valpuesta JM (2007) The inter-ring arrangement of the cytosolic chaperonin CCT. EMBO Rep 8(3):252–257

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci U S A 109(8):2884–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B, Ludtke S (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20(5):814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shomura Y, Yoshida T, Iizuka R, Maruyama T, Yohda M, Miki K (2004) Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J Mol Biol 335(5):1265–1278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work of D.S. is supported by the Israel Science Foundation (1466/18), Binational Science Foundation (2016070), and the Ministry of Science and Technology (80802). The work of H.J.W. was supported by the I-Core program of the Budgeting and Planning Committee and the Israel Science Foundation (Center No. 1775/12) and by Len Blavatnik and the Blavatnik Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim J. Wolfson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schneidman-Duhovny, D., Wolfson, H.J. (2020). Modeling of Multimolecular Complexes. In: Gáspári, Z. (eds) Structural Bioinformatics. Methods in Molecular Biology, vol 2112. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0270-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0270-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0269-0

  • Online ISBN: 978-1-0716-0270-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics