Skip to main content

Methods for the Investigation of Trypanosoma cruzi Amastigote Proliferation in Mammalian Host Cells

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

In its mammalian host, the kinetoplastid protozoan parasite, Trypanosoma cruzi, is obliged to establish intracellular residence in order to replicate. This parasite can infect and replicate within a diverse array of cell and tissue types across many mammalian host species. The establishment of quantitative assays to assess the replicative capacity of intracellular T. cruzi amastigotes under different conditions is a critical facet to understanding this host–pathogen interaction. Several complementary methods are outlined here. Their strengths and deficiencies in quantifying intracellular amastigote growth and death are discussed. We describe three assays to assess growth/replication. (1) A high throughput multiplexed plate-based assay that quantifies both host cell and parasite abundance. This method allows for the rapid and simultaneous screening of many conditions (e.g., small molecule inhibitors, the impact of host gene knockdown or of altered environmental parameters). (2) Simple fluorescence microscopy-based enumeration of amastigotes within host cells and (3) flow cytometry-based quantification of amastigote proliferation following isolation from host cells. Each approach has advantages but none of these can assess lethal outcomes in a quantitative manner. For this, we describe a clonal outgrowth assay that identifies the proportion of parasites that succumb to a defined exposure. Even using these assays, it can be challenging to differentiate between direct (targeting the parasite) and/or indirect (targeting the host) effects of a given treatment on amastigote growth. Therefore, we also outline a method of purification of intracellular amastigotes that allows for downstream biochemical and metabolic investigations specifically on the isolated amastigote.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bern C (2015) Chagas’ disease. N Engl J Med 373:456–466. https://doi.org/10.1056/NEJMra1410150

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Tarleton RL (1999) Parasite persistence correlates with disease severity and localization in chronic Chagas’ disease. J Infect Dis 180:480–486. https://doi.org/10.1086/314889

    Article  CAS  PubMed  Google Scholar 

  3. Tarleton RL, Zhang L, Downs MO (1997) “Autoimmune rejection” of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. Proc Natl Acad Sci U S A 94:3932–3937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morillo CA, Marin-Neto JA, Avezum A, Sosa-Estani S, Rassi A, Rosas F, Villena E, Quiroz R, Bonilla R, Britto C, Guhl F, Velazquez E, Bonilla L, Meeks B, Rao-Melacini P, Pogue J, Mattos A, Lazdins J, Rassi A, Connolly SJ, Yusuf S, Investigators BENEFIT (2015) Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373:1295–1306. https://doi.org/10.1056/NEJMoa1507574

    Article  CAS  PubMed  Google Scholar 

  5. Murcia L, Carrilero B, Muñoz MJ, Iborra MA, Segovia M (2010) Usefulness of PCR for monitoring benznidazole response in patients with chronic Chagas’ disease: a prospective study in a non-disease-endemic country. J Antimicrob Chemother 65:1759–1764. https://doi.org/10.1093/jac/dkq201

    Article  CAS  PubMed  Google Scholar 

  6. Dumoulin PC, Burleigh BA (2018) Stress-induced proliferation and cell cycle plasticity of intracellular Trypanosoma cruzi amastigotes. mBio 9. https://doi.org/10.1128/mBio.00673-18

  7. Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 40:2592–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romanha AJ, de CSL, Soeiro M de NC, Lannes-Vieira J, Ribeiro I, Talvani A, Bourdin B, Blum B, Olivieri B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE, Bustamante JM, Freitas-Junior LH, Romero LI, Bahia MT, Lotrowska M, Soares M, Andrade SG, Armstrong T, Degrave W, Andrade Z de A (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  CAS  PubMed  Google Scholar 

  9. Peña I, Pilar Manzano M, Cantizani J, Kessler A, Alonso-Padilla J, Bardera AI, Alvarez E, Colmenarejo G, Cotillo I, Roquero I, de Dios-Anton F, Barroso V, Rodriguez A, Gray DW, Navarro M, Kumar V, Sherstnev A, Drewry DH, Brown JR, Fiandor JM, Julio Martin J (2015) New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep 5:8771. https://doi.org/10.1038/srep08771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, Barnes SW, Mathison CJN, Myburgh E, Gao M-Y, Gillespie JR, Liu X, Tan JL, Stinson M, Rivera IC, Ballard J, Yeh V, Groessl T, Federe G, Koh HXY, Venable JD, Bursulaya B, Shapiro M, Mishra PK, Spraggon G, Brock A, Mottram JC, Buckner FS, Rao SPS, Wen BG, Walker JR, Tuntland T, Molteni V, Glynne RJ, Supek F (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229–233. https://doi.org/10.1038/nature19339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diaz-Gonzalez R, Kuhlmann FM, Galan-Rodriguez C, Madeira da Silva L, Saldivia M, Karver CE, Rodriguez A, Beverley SM, Navarro M, Pollastri MP (2011) The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing. PLoS Negl Trop Dis 5:e1297. https://doi.org/10.1371/journal.pntd.0001297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bettiol E, Samanovic M, Murkin AS, Raper J, Buckner F, Rodriguez A (2009) Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis 3:e384. https://doi.org/10.1371/journal.pntd.0000384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caradonna KL, Engel JC, Jacobi D, Lee C-H, Burleigh BA (2013) Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 13:108–117. https://doi.org/10.1016/j.chom.2012.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alonso-Padilla J, Cotillo I, Presa JL, Cantizani J, Peña I, Bardera AI, Martín JJ, Rodriguez A (2015) Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line. PLoS Negl Trop Dis 9:e0003493. https://doi.org/10.1371/journal.pntd.0003493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sykes ML, Avery VM (2015) Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes. Int J Parasitol Drugs Drug Resist 5:215–228. https://doi.org/10.1016/j.ijpddr.2015.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Young RD, Rathod PK (1993) Clonal viability measurements on Plasmodium falciparum to assess in vitro schizonticidal activity of leupeptin, chloroquine, and 5-fluoroorotate. Antimicrob Agents Chemother 37:1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah-Simpson S, Pereira CFA, Dumoulin PC, Caradonna KL, Burleigh BA (2016) Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology. Mol Biochem Parasitol 208:91–95. https://doi.org/10.1016/j.molbiopara.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  18. Shah-Simpson S, Lentini G, Dumoulin PC, Burleigh BA (2017) Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathog 13:e1006747. https://doi.org/10.1371/journal.ppat.1006747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gazos-Lopes F, Martin JL, Dumoulin PC, Burleigh BA (2017) Host triacylglycerols shape the lipidome of intracellular trypanosomes and modulate their growth. PLoS Pathog 13:e1006800. https://doi.org/10.1371/journal.ppat.1006800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marques A, Marques A, Nakayasu E, Almeida I (2011) Purification of extracellular and intracellular amastigotes of Trypanosoma cruzi from mammalian host-infected cells. Protoc Exch. https://doi.org/10.1038/protex.2011.265

  21. Roederer M (2011) Interpretation of cellular proliferation data: avoid the panglossian. Cytom Part J Int Soc Anal Cytol 79:95–101. https://doi.org/10.1002/cyto.a.21010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Burleigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dumoulin, P.C., Burleigh, B.A. (2020). Methods for the Investigation of Trypanosoma cruzi Amastigote Proliferation in Mammalian Host Cells. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics