Skip to main content

A Microfluidic Culture Platform to Assess Axon Degeneration

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2143))

Abstract

The field of microfluidics allows for the precise spatial manipulation of small amounts of fluids. Within microstructures, laminar flow of fluids can be exploited to control the diffusion of small molecules, creating desired microenvironments for cells. Cellular neuroscience has benefited greatly from devices designed to fluidically isolate cell bodies and axons. Microfluidic devices specialized for neuron compartmentalization are made of polydimethylsiloxane (PDMS) which is gas permeable, is compatible with fluorescence microscopy, and has low cost. These devices are commonly used to study signals initiated exclusively on axons, somatodendritic compartments, or even single synapses. We have also found that microfluidic devices allow for rapid, reproducible interrogation of axon degeneration. Here, we describe the methodology for assessing axonal degeneration in microfluidic devices. We describe several use cases, including enucleation (removal of cell bodies) and trophic deprivation to investigate axon degeneration in pathological and developmental scenarios, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Feigin VL, Abajobir AA, Abate KH et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16:877–897

    Article  Google Scholar 

  2. Vargas ME, Barres BA (2007) Why Is wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179

    Article  CAS  Google Scholar 

  3. Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos Trans R Soc London 140:423–429

    Article  Google Scholar 

  4. Coleman MP, Freeman MR (2010) Wallerian degeneration, Wld S, and Nmnat. Annu Rev Neurosci 33:245–267

    Article  CAS  Google Scholar 

  5. Nichols ALA, Meelkop E, Linton C et al (2016) The apoptotic engulfment machinery regulates axonal degeneration in C. elegans neurons. Cell Rep 14:1673–1683

    Article  CAS  Google Scholar 

  6. Cusack CL, Swahari V, Hampton Henley W et al (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4:1876

    Article  Google Scholar 

  7. Solomon F, Magendantz M (1981) Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J Cell Biol 89:157–161

    Article  CAS  Google Scholar 

  8. Luo L, O’Leary DDM (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    Article  CAS  Google Scholar 

  9. Neukomm LJ, Freeman MR (2014) Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 24:515–523

    Article  CAS  Google Scholar 

  10. Geden MJ, Deshmukh M (2016) Axon degeneration: context defines distinct pathways. Curr Opin Neurobiol 39:108–115

    Article  CAS  Google Scholar 

  11. Poulain FE, Chien CB (2013) Proteoglycan-mediated axon degeneration corrects pretarget topographic sorting errors. Neuron 78:49–56

    Article  CAS  Google Scholar 

  12. Cheriyan T, Ryan DJ, Weinreb JH et al (2014) Spinal cord injury models: a review. Spinal Cord 52:588–595

    Article  CAS  Google Scholar 

  13. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  Google Scholar 

  14. Watts RJ, Schuldiner O, Perrino J et al (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14:678–684

    Article  CAS  Google Scholar 

  15. Low LK, Cheng HJ (2006) Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philos Trans R Soc B Biol Sci 361:1531–1544

    Article  CAS  Google Scholar 

  16. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74:4516–4519

    Article  CAS  Google Scholar 

  17. Park JW, Kim HJ, Byun JH et al (2009) Novel microfluidic platform for culturing neurons: culturing and biochemical analysis of neuronal components. Biotechnol J 4:1573–1577

    Article  CAS  Google Scholar 

  18. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  19. Taylor AM, Blurton-Jones M, Rhee SW et al (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  CAS  Google Scholar 

  20. Park JW, Vahidi B, Taylor AM et al (2006) Microfluidic culture platform for neuroscience research. Nat Protoc 1:2128–2136

    Article  CAS  Google Scholar 

  21. Gamage KK, Cheng I, Park RE et al (2017) Death receptor 6 promotes wallerian degeneration in peripheral axons. Curr Biol 27(6):890–896

    Article  CAS  Google Scholar 

  22. Millet LJ, Gillette MU (2012) New perspectives on neuronal development via microfluidic environments. Trends Neurosci 35:752–761

    Article  CAS  Google Scholar 

  23. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  CAS  Google Scholar 

  24. Gross PG, Kartalov EP, Scherer A et al (2007) Applications of microfluidics for neuronal studies. J Neurol Sci 252:135–143

    Article  Google Scholar 

  25. Barford K, Keeler A, McMahon L et al (2018) Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Sci Rep 8:1–14

    Article  CAS  Google Scholar 

  26. Park J, Koito H, Li J et al (2012) Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 12:3296–3304

    Article  CAS  Google Scholar 

  27. Jocher G, Mannschatz SH, Offterdinger M et al (2018) Microfluidics of small-population neurons allows for a precise quantification of the peripheral axonal growth state. Front Cell Neurosci 12:1–12

    Article  Google Scholar 

  28. Kilinc D, Peyrin JM, Soubeyre V et al (2011) Wallerian-like degeneration of central neurons after synchronized and geometrically registered mass axotomy in a three-compartmental microfluidic chip. Neurotox Res 19:149–161

    Article  Google Scholar 

  29. Shi M, Majumdar D, Gao Y et al (2013) Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts. Lab Chip 13:3008–3021

    Article  CAS  Google Scholar 

  30. Park JW, Kim HJ, Kang MW et al (2013) Advances in microfluidics-based experimental methods for neuroscience research. Lab Chip 13:509–521

    Article  CAS  Google Scholar 

  31. Shrirao AB, Kung FH, Omelchenko A et al (2018) Microfluidic platforms for the study of neuronal injury in vitro. Biotechnol Bioeng 115:815–830

    Article  CAS  Google Scholar 

  32. Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4:727–731

    Article  CAS  Google Scholar 

  33. Ben-Yakar A, Chronis N, Lu H (2009) Microfluidics for the analysis of behavior, nerve regeneration, and neural cell biology in C. elegans. Curr Opin Neurobiol 19:561–567

    Article  CAS  Google Scholar 

  34. Kneynsberg A, Collier TJ, Manfredsson FP et al (2016) Quantitative and semi-quantitative measurements of axonal degeneration in tissue and primary neuron cultures. J Neurosci Methods 266:32–41

    Article  CAS  Google Scholar 

  35. Li Y, Yang M, Huang Z et al (2014) AxonQuant: A microfluidic chamber culture-coupled algorithm that allows high-throughput quantification of axonal damage. Neurosignals 22:14–29

    Article  Google Scholar 

  36. Zhai Q, Wang J, Kim A et al (2003) Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron 39:217–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nadine Ly for technical assistance and Kanchana Gamage and Shayla Clark for helpful suggestions and comments on the chapter. We thank Professor Brian Pierchala (University of Michigan) for Campenot chamber image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Deppmann .

Editor information

Editors and Affiliations

1 Electronics Supplementary Materials

Data 1

: (AI 140 kb)

Data 2

: (DWG 92 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yong, Y., Hughes, C., Deppmann, C. (2020). A Microfluidic Culture Platform to Assess Axon Degeneration. In: Babetto, E. (eds) Axon Degeneration. Methods in Molecular Biology, vol 2143. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0585-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0585-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0584-4

  • Online ISBN: 978-1-0716-0585-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics