Skip to main content

Quantification of Genetically Encoded Lipid Biosensors

  • Protocol
  • First Online:
Phosphoinositides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2251))

Abstract

Lipids, like phosphoinositides, can be visualized in living cells in real time using genetically encoded biosensors and fluorescence microscopy. Sensor localization can be quantified by determining the fluorescence intensity of each fluorophore. Enrichment of lipids at membranes can be determined by generating and applying an organelle-specific binary mask. In this chapter, we provide a detailed list of reagents and methods to visualize and quantify relative lipid levels. Applying this approach, changes in lipid levels can be assessed in cases when lipid metabolizing enzymes are mutated or otherwise altered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Bio 9:112–124

    Article  CAS  Google Scholar 

  2. van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8

    Article  PubMed  CAS  Google Scholar 

  3. Balla T (2013) Phosphoinositides: tiny lipids with Giant impact on cell regulation. Physiol Rev 93:1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hammond GR, Fischer MJ, Anderson KE et al (2012) PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476:1–23

    Article  CAS  PubMed  Google Scholar 

  6. Balla T, Szentpetery Z, Kim Y (2009) Phosphoinositide signaling: new tools and insights. Physiology 24:231–244

    Article  CAS  PubMed  Google Scholar 

  7. Maekawa M, Fairn G (2014) Molecular probes to visualize the location, organization and dynamics of lipids. J Cell Sci 127:4801–4812

    PubMed  CAS  Google Scholar 

  8. Hammond G, Balla T (2015) Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim Biophys Acta 1851:746–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tóth JT, Gulyás G, Tóth DJ et al (2016) BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochim Biophys Acta 1861:177–187

    Article  PubMed  CAS  Google Scholar 

  10. Várnai P, Gulyás G, Tóth DJ et al (2017) Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 64:72–82

    Article  PubMed  CAS  Google Scholar 

  11. Ivanova PT, Cerda BA, Horn DM et al (2001) Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc Natl Acad Sci U S A 98:7152–7157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wenk MR, Lucast L, Paolo G et al (2003) Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 21:813–817

    Article  CAS  PubMed  Google Scholar 

  13. Milne SB, Ivanova PT, DeCamp D et al (2005) A targeted mass spectrometric analysis of phosphatidylinositol phosphate species. J Lipid Res 46:1796–1802

    Article  CAS  PubMed  Google Scholar 

  14. Alter CA, Wolf BA (1995) Identification of phosphatidylinositol 3,4,5-trisphosphate in pancreatic islets and insulin-secreting β-cells. Biochem Biophys Res Commun 208:190–197

    Article  CAS  PubMed  Google Scholar 

  15. Hokin-Neaverson M, Sadeghian K (1976) Separation of [3H]inositol monophosphates and [3H]inositol on silica gel glass-fiber sheets. J Chromatogr A 120:502–505

    Article  CAS  Google Scholar 

  16. Natarajan V, Schmid HH (1987) Inositol phospholipid hydrolysis by rat sciatic nerve phospholipase C. J Neurochem 49:1878–1887

    Article  CAS  PubMed  Google Scholar 

  17. Hegewald H (1996) One-dimensional thin-layer chromatography of all known D-3 and D-4 isomers of phosphoinositides. Anal Biochem 242:152–155

    Article  CAS  PubMed  Google Scholar 

  18. Várnai P, Lin X, Lee S et al (2002) Inositol lipid binding and membrane localization of isolated Pleckstrin homology (PH) domains studies on the pH domains of phospholipase C δ1 and p130. J Biol Chem 277:27412–27422

    Article  PubMed  CAS  Google Scholar 

  19. Balla T, Várnai P (2002) Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. Sci Stke 2002:pl3–pl3

    Article  PubMed  Google Scholar 

  20. Lemmon MA, Ferguson KM, Abrams CS (2002) Pleckstrin homology domains and the cytoskeleton. FEBS Lett 513:71–76

    Article  CAS  PubMed  Google Scholar 

  21. Lemmon MA (2003) Phosphoinositide recognition domains. Traffic 4:201–213

    Article  CAS  PubMed  Google Scholar 

  22. Hammond G, Machner MP, Balla T (2014) A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J Cell Biol 205:113–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wills RC, Goulden BD, Hammond GR (2018) Genetically encoded lipid biosensors. Mol Biol Cell 29:1526–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  25. Linkert M, Rueden CT, Allan C et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shimada Y, Maruya M, Iwashita S et al (2002) The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains. Eur J Biochem 269:6195–6203

    Article  CAS  PubMed  Google Scholar 

  27. Maekawa M, Fairn GD (2015) Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J Cell Sci 128:1422–1433

    Article  CAS  PubMed  Google Scholar 

  28. Liu S-L, Sheng R, Jung J et al (2016) Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol 13:268–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yamaji A, Sekizawa Y, Emoto K et al (1998) Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem 273:5300–5306

    Article  CAS  PubMed  Google Scholar 

  30. Kiyokawa E, Baba T, Otsuka N et al (2005) Spatial and functional heterogeneity of sphingolipid-rich membrane domains. J Biol Chem 280:24072–24084

    Article  CAS  PubMed  Google Scholar 

  31. Abe M, Makino A, Hullin-Matsuda F et al (2012) A role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis. Mol Cell Biol 32:1396–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bohdanowicz M, Schlam D, Hermansson M et al (2013) Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol Biol Cell 24:1700–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang F, Wang Z, Lu M et al (2014) Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol Cell Biol 34:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeung T, Gilbert GE, Shi J et al (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210–213

    Article  CAS  PubMed  Google Scholar 

  35. Maeda K, Anand K, Chiapparino A et al (2013) Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:nature12430

    Article  CAS  Google Scholar 

  36. Vecchio K, Stahelin RV (2018) Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. J Bioenerg Biomembr 50:1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Stahelin RV, Digman MA, Medkova M et al (2005) Diacylglycerol-induced membrane targeting and activation of protein kinase Cϵ mechanistic differences between protein kinases Cδ and Cϵ. J Biol Chem 280:19784–19793

    Article  CAS  PubMed  Google Scholar 

  38. Domart M-C, Hobday TM, Peddie CJ et al (2012) Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology. PLoS One 7:e51150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen J, Deng F, Li J et al (2008) Selective binding of phorbol esters and diacylglycerol by individual C1 domains of the PKD family. Biochem J 411:333–342

    Article  CAS  PubMed  Google Scholar 

  40. Kim Y, Guzman-Hernandez M, Balla T (2011) A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell 21:813–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zewe J, Miller A, Sangappa S, et al (2019) Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. Biorxiv 677039

    Google Scholar 

  42. Pemberton JG, Kim Y, Sengupta N, et al (2019) Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. Biorxiv 677229

    Google Scholar 

  43. Burd CG, Emr SD (1998) Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2:157–162

    Article  CAS  PubMed  Google Scholar 

  44. Gaullier J-M, Simonsen A, D’Arrigo A et al (1998) FYVE fingers bind PtdIns(3)P. Nature 394:432–433

    Article  CAS  PubMed  Google Scholar 

  45. Gillooly DJ, Morrow IC, Lindsay M et al (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sankaran VG, Klein DE, Chdeva M et al (2001) High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization †. Biochemistry 40:8581–8587

    Article  CAS  PubMed  Google Scholar 

  47. Gaullier J-M, Rønning E, Gillooly DJ et al (2000) Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. J Biol Chem 275:24595–24600

    Article  CAS  PubMed  Google Scholar 

  48. Bravo J, Karathanassis D, Pacold CM et al (2001) The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol Cell 8:829–839

    Article  CAS  PubMed  Google Scholar 

  49. Ellson CD, Gobert-Gosse S, Anderson KE et al (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat Cell Biol 3:679–682

    Article  CAS  PubMed  Google Scholar 

  50. Kanai F, Liu H, Field SJ et al (2001) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3:675–678

    Article  CAS  PubMed  Google Scholar 

  51. Brombacher E, Urwyler S, Ragaz C et al (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of legionella pneumophila. J Biol Chem 284:4846–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schoebel S, Blankenfeldt W, Goody RS et al (2010) High-affinity binding of phosphatidylinositol 4-phosphate by legionella pneumophila DrrA. EMBO Rep 11:598–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Levin R, Hammond GR, Balla T et al (2016) Multiphasic dynamics of phosphatidylinositol 4-phosphate during phagocytosis. Mol Biol Cell 28:128–140

    Article  PubMed  CAS  Google Scholar 

  54. Dolinsky S, Haneburger I, Cichy A et al (2014) The legionella longbeachae Icm/dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with Nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum. Interactions 82:4021–4033

    Google Scholar 

  55. Weber S, Wagner M, Hilbi H (2014) Live-cell imaging of phosphoinositide dynamics and membrane architecture during legionella infection. MBio 5:e00839–e00813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zewe JP, Wills RC, Sangappa S et al (2018) SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife 7:e35588

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chung J, Torta F, Masai K et al (2015) PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contacts. Science 349:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghai R, Du X, Wang H et al (2017) ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5) P 2) and regulate its level at the plasma membrane. Nat Commun 8:757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sohn M, Korzeniowski M, Zewe JP et al (2018) PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER–PM contact sites. J Cell Biol 217(5):1797–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Levine TP, Munro S (2002) Targeting of Golgi-specific Pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12:695–704

    Article  CAS  PubMed  Google Scholar 

  61. Szentpetery Z, Várnai P, Balla T (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci U S A 107:8225–8230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lenoir M, Grzybek M, Majkowski M et al (2015) Structural basis of dynamic membrane recognition by trans-Golgi network specific FAPP proteins. J Mol Biol 427:966–981

    Article  CAS  PubMed  Google Scholar 

  63. Gozani O, Karuman P, Jones DR et al (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114:99–111

    Article  CAS  PubMed  Google Scholar 

  64. Pendaries C, Tronchère H, Arbibe L et al (2006) PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25:1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dowler S, Currie RA, Campbell DG et al (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thomas CC, Dowler S, Deak M et al (2001) Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem J 358:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marshall AJ, Krahn AK, Ma K et al (2002) TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol 22:5479–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kimber WA, Trinkle-mulcahy L, Cheung PC et al (2002) Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 361:525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manna D, Albanese A, Park W et al (2007) Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding Pleckstrin homology domains. J Biol Chem 282:32093–32105

    Article  CAS  PubMed  Google Scholar 

  70. Oikawa T, Itoh T, Takenawa T (2008) Sequential signals toward podosome formation in NIH-src cells. J Cell Biol 182:157–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Posor Y, Eichhorn-Gruenig M, Puchkov D et al (2013) Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499:233–237

    Article  CAS  PubMed  Google Scholar 

  72. He K, Robert Marsland SU III et al (2017) Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature 552:410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goulden BD, Pacheco J, Dull A et al (2018) A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. J Cell Biol 218:jcb.201809026

    Google Scholar 

  74. Li X, Wang X, Zhang X et al (2013) Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics. Proc Natl Acad Sci U S A 110:21165–21170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hammond G, Takasuga S, Sasaki T et al (2015) The ML1Nx2 phosphatidylinositol 3,5-bisphosphate probe shows poor selectivity in cells. PLoS One 10:1–13

    Article  CAS  Google Scholar 

  76. Ford MG, Pearse BM, Higgins MK et al (2001) Simultaneous binding of PtdIns(4,5)P2 and Clathrin by AP180 in the nucleation of Clathrin lattices on membranes. Science 291:1051–1055

    Article  CAS  PubMed  Google Scholar 

  77. Itoh T, Koshiba S, Kigawa T et al (2001) Role of the ENTH domain in Phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291:1047–1051

    Article  CAS  PubMed  Google Scholar 

  78. Yoon Y, Lee PJ, Kurilova S et al (2011) In situ quantitative imaging of cellular lipids using molecular sensors. Nat Chem 3:868–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Garcia P, Gupta R, Shah S et al (1995) The pleckstrin homology domain of phospholipase C-.delta.1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34:16228–16234

    Article  CAS  PubMed  Google Scholar 

  80. Lemmon M, Ferguson K, O’Brien R et al (1995) Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A 92:10472–10476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  CAS  PubMed  Google Scholar 

  82. Várnai P, Balla T (1998) Visualization of Phosphoinositides that bind Pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to Myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hirose K, Kadowaki S, Tanabe M et al (1999) Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284:1527–1530

    Article  CAS  PubMed  Google Scholar 

  84. Suh B, Inoue T, Meyer T et al (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314:1454–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee S, Várnai P, Balla A et al (2004) The Pleckstrin homology domain of phosphoinositide-specific phospholipase Cδ4 is not a critical determinant of the membrane localization of the enzyme. J Biol Chem 279:24362–24371

    Article  CAS  PubMed  Google Scholar 

  86. Quinn K, Behe P, Tinker A (2008) Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby. J Physiol 586:2855–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Halaszovich CR, Schreiber DN, Oliver D (2009) Ci-VSP is a depolarization-activated phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate 5′-phosphatase. J Biol Chem 284:2106–2113

    Article  CAS  PubMed  Google Scholar 

  88. Szentpetery Z, Balla A, Kim YJ et al (2009) Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biol 10:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Frech M, Andjelkovic M, Ingley E et al (1997) High affinity binding of inositol phosphates and Phosphoinositides to the Pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 272:8474–8481

    Article  CAS  PubMed  Google Scholar 

  90. Watton SJ, Downward J (1999) Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell–matrix and cell–cell interaction. Curr Biol 9:433–436

    Article  CAS  PubMed  Google Scholar 

  91. Fukuda M, Kojima T, Kabayama H et al (1996) Mutation of the Pleckstrin homology domain of Bruton’s tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-Tetrakisphosphate binding capacity. J Biol Chem 271:30303–30306

    Article  CAS  PubMed  Google Scholar 

  92. Salim K, Bottomley M, Querfurth E et al (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J 15:6241–6250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rameh LE, Arvidsson A, Carraway KL et al (1997) A comparative analysis of the phosphoinositide binding specificity of Pleckstrin homology domains. J Biol Chem 272:22059–22066

    Article  CAS  PubMed  Google Scholar 

  94. Kontos CD, Stauffer TP, Yang W-P et al (1998) Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18:4131–4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klarlund JK, Guilherme A, Holik JJ et al (1997) Signaling by Phosphoinositide-3,4,5-trisphosphate through proteins containing Pleckstrin and Sec7 homology domains. Science 275:1927–1930

    Article  CAS  PubMed  Google Scholar 

  96. Venkateswarlu K, Oatey PB, Tavaré JM et al (1998) Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol 8:463–466

    Article  CAS  PubMed  Google Scholar 

  97. Cronin TC, DiNitto JP, Czech MP et al (2004) Structural determinants of phosphoinositide selectivity in splice variants of Grp1 family PH domains. EMBO J 23:3711–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gray A, Kaay J, Downes PC (1999) The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J 344:929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cohen L, Honda A, Varnai P et al (2007) Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains. Mol Biol Cell 18:2244–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hofmann I, Thompson A, Nderson C et al (2007) The Arl4 family of small G proteins can recruit the Cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol 17:711–716

    Article  CAS  PubMed  Google Scholar 

  101. Li C-C, Chiang T-C, Wu T-S et al (2007) ARL4D recruits Cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 18:4420–4437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Institutes of Health grant (1R35GM119412-01) to G.R.V.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald R. V. Hammond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wills, R.C., Pacheco, J., Hammond, G.R.V. (2021). Quantification of Genetically Encoded Lipid Biosensors. In: Botelho, R.J. (eds) Phosphoinositides. Methods in Molecular Biology, vol 2251. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1142-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1142-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1141-8

  • Online ISBN: 978-1-0716-1142-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics