Skip to main content

Qualitative and Quantitative Shotgun Proteomics Data Analysis from Data-Dependent Acquisition Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2259))

Abstract

Shotgun proteomics is the inferential analysis of proteoforms using peptide proxies produced by enzyme-catalyzed hydrolysis of entire proteomes. Such peptides are usually identified by nanoflow liquid chromatography coupled to tandem mass spectrometry analysis (nLC-MS/MS). Traditionally, MS/MS analysis is performed in data-dependent acquisition (DDA) mode, which usually produces a pattern of fragment masses unique to a single peptide’s fragmentation. Here, I describe a statistically rigorous qualitative and quantitative computational analysis for shotgun proteomics DDA analysis using free open-source software tools. MS/MS data are used to identify peptides, and the area of peptide mass/charge over chromatographic elution is used to quantify peptides. All peptides that uniquely map to a protein sequence predicted from the genome are combined into a single protein quantity, which can then be compared across experimental conditions. Statistically significant protein changes can be summarized using gene ontology or pathway term enrichment analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Muntel J, Gandhi T, Verbeke L, Bernhardt OM, Treiber T, Bruderer R, Reiter L (2019) Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics 15:348–360

    Article  CAS  Google Scholar 

  2. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  3. Choi H, Nesvizhskii AI (2008) False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J Proteome Res 7:47–50

    Article  CAS  Google Scholar 

  4. Audain E, Uszkoreit J, Sachsenberg T, Pfeuffer J, Liang X, Hermjakob H, Sanchez A, Eisenacher M, Reinert K, Tabb DL, Kohlbacher O, Perez-Riverol Y (2017) In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics. J Proteome 150:170–182

    Article  CAS  Google Scholar 

  5. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  Google Scholar 

  6. Schilling B, Rardin MJ, MacLean BX, Zawadzka AM, Frewen BE, Cusack MP, Sorensen DJ, Bereman MS, Jing E, Wu CC, Verdin E, Kahn CR, Maccoss MJ, Gibson BW (2012) Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation. Mol Cell Proteomics 11:202–214

    Article  CAS  Google Scholar 

  7. Guergues J, Wohlfahrt J, Zhang P, Liu B, Stevens SM (2020) Deep proteome profiling reveals novel pathways associated with pro-inflammatory and alcohol-induced microglial activation phenotypes. J Proteome 220:103753

    Article  CAS  Google Scholar 

  8. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450

    Article  CAS  Google Scholar 

  9. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920

    Article  CAS  Google Scholar 

  10. Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods 14:513–520

    Article  CAS  Google Scholar 

  11. Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z, Tasman N, Mendoza L, Moritz RL, Aebersold R, Nesvizhskii AI (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10:M111.007690

    Article  Google Scholar 

  12. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  Google Scholar 

  13. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Article  CAS  Google Scholar 

  14. R Development Core Team. (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing

    Google Scholar 

  15. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  16. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) through a training grant (T15 LM007359) and a subcontract development project award (P30 AG062715).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meyer, J.G. (2021). Qualitative and Quantitative Shotgun Proteomics Data Analysis from Data-Dependent Acquisition Mass Spectrometry. In: Carrera, M., Mateos, J. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 2259. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1178-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1178-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1177-7

  • Online ISBN: 978-1-0716-1178-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics