Skip to main content

Natural Products in Drug Discovery: Present Status and Perspectives

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 655))

Abstract

Natural products and their derivatives have been and continue to be rich sources for drug discovery. However, natural products are not drugs. They are produce in nature and through biological assays they are identified as leads, which become candidates for drug development. More than 60% of the drugs that are in the market derive from natural sources. During the last two decades, research aimed at exploiting natural products as a resource has seriously declined. This is in part due to the development of new technologies such as combinatorial chemistry, metagenomics and high-throughput screening. However, the new drug discovery approaches did not fulfilled the initial expectations. This has lead to a renewed interest in natural products, determined by the urgent need for new drugs, in particular to fight against infections caused by multi-resistant pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cragg GM, Newman DJ, Snader KN. Natural products in drug discovery and development. J Nat Prod 1997; 60:52–60.

    Article  CAS  PubMed  Google Scholar 

  2. Feher M, Schmidt JM. Property distributions: differences between drugs, natural products and molecules from combinatorial chemistry. J Chem Inf Comput Sci 2003; 43:218–227.

    CAS  PubMed  Google Scholar 

  3. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat prod 2003; 66:1022–1037.

    Article  CAS  PubMed  Google Scholar 

  4. Demain AL. Small bugs, big business: the economic power of the microbe. Biotechnol Adv 2000; 18:499–514.

    Article  CAS  PubMed  Google Scholar 

  5. Demain AL, Fang A. The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 2000; 69:1–39.

    CAS  PubMed  Google Scholar 

  6. Firn RD, Jones CG. The evolution of secondary metabolism—a unifying model. Mol Microbiol 2000; 37:989–994.

    Article  CAS  PubMed  Google Scholar 

  7. Kochn FE, Carter GT. The evolving role of natural products in drug discovery. Nature Rev Drug Discov 2005; 4:206–220.

    Article  Google Scholar 

  8. Ajay A, Walters WP, Murcko MA. Can we learn to distinguish between “drug-like” and “non-drug-like” molecules? J Med Chem 1998; 41:3314–3324.

    Article  CAS  PubMed  Google Scholar 

  9. Butler MS. Natural products to drugs: natural products derived compounds in clinical trials. Nat Prod Rep 2005; 22:162–195.

    Article  CAS  PubMed  Google Scholar 

  10. Clardy J, Walsh C. Lessons from natural molecules. Nature 2004; 432:829–837.

    Article  CAS  PubMed  Google Scholar 

  11. Verdine GL. The combinatorial chemistry of nature. Nature 1996; 384:11–13.

    Article  CAS  PubMed  Google Scholar 

  12. Lipinski CA, Lombardo F, Dominy BW et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 1997; 23:3–25.

    Article  CAS  Google Scholar 

  13. Bemis GW, Murcko MA. The properties of known drugs. I. Molecular Frameworks. J Med Chem 1996; 39:2887–2993.

    Article  CAS  PubMed  Google Scholar 

  14. Bemis GW, Murcko MA. The properties of known drugs. II. Side chains. J Med Chem. 1999; 42:5095–5099.

    Article  CAS  PubMed  Google Scholar 

  15. Oprea TI. Property distribution of drug-related chemical databases. J Comput-Aided Mol Des 2000; 14:251–264.

    Article  CAS  PubMed  Google Scholar 

  16. Xu J, Stevenson J. Drug-like index: a new approach to measure drug-like compounds and their diversity. J Chem Inf Comput Sci 2000; 40:1177–1187.

    CAS  PubMed  Google Scholar 

  17. Schmidt-Ioanas M, de Roux A, Lode H. New antibiotics for the treatment of severe staphylococcal infection in the critically ill patient. Curr Opin Crit Care 2005; 11:481–486.

    Article  PubMed  Google Scholar 

  18. McGowan JE. Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Infect Control 2006; 34(5 Suppl 1):S29–S37.

    Article  PubMed  Google Scholar 

  19. Abbott A. Medics braced for fresh superbug. Nature 2005; 436:758.

    Article  CAS  PubMed  Google Scholar 

  20. Navon-Venezia S, Ben-Ami R, Carmeli Y. Update on Pseudomonas aeruginosa and Acinetobacter baumanii infections in the healthcare setting. Curr Opin Infect Dis 2005; 18:306–313.

    Article  PubMed  Google Scholar 

  21. Shah NS, Wright A, Bai GH et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 2007; 13:380–387.

    Article  CAS  PubMed  Google Scholar 

  22. Norrby SR, Nord CE, Finch R et al. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 2005; 5:115–119.

    PubMed  Google Scholar 

  23. Timmis KN. Golden age of drug discovery or dark age of missed chances? Environm Microbiol 2005; 7:1861–1863.

    Article  Google Scholar 

  24. Keller M, Zengler K. Tapping into microbial diversity. Nature Rev Microbiol 2004; 2:141–150.

    Article  CAS  Google Scholar 

  25. Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev 2000; 24:403–427.

    Article  CAS  PubMed  Google Scholar 

  26. Reinchenbach H, Höfle G. Myxobacteria as producers of secondary metabolites. In: Grabley S, Thierriecke R, Eds. Drug discovery from Nature, Berlin, Heidelberg, New York: Springer-Verlag Berlin and Heidelberg GmbH and Co: 1999: 149–179.

    Google Scholar 

  27. Neu HC. The crisis in antibiotic resistance. Science 1992; 257:1064–1073.

    Article  CAS  PubMed  Google Scholar 

  28. Torsvik V, Goksoyr J, Daae FL. High diversity in DNA of soil bacteria. Appl Environ Microbiol 1990; 56:782–787.

    CAS  PubMed  Google Scholar 

  29. Leeds JA, Schmitt EK, Krastel P. Recent developments in antibacterial drug discovery: microbe-derived natural products—from collection to the clinic. Expert Opin Investig Drugs 2006; 15:211–226.

    Article  CAS  PubMed  Google Scholar 

  30. Daffonchio D, Borin S, Brusa T et al. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 2006; 440:203–207.

    Article  CAS  PubMed  Google Scholar 

  31. Ferrer M, Golyshina OV, Chernikova TN et al. Novel microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 2005; 12:895–904.

    Article  CAS  PubMed  Google Scholar 

  32. van der Wielen PWJJ, Bolhuis H, Bolin S et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 2005; 307:121–123.

    Article  PubMed  Google Scholar 

  33. Connon SA, Gioavannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environm Microbiol 2002; 68:3878–3885.

    Article  CAS  Google Scholar 

  34. Janssen PH, Yates PS, Grinton BE et al. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia. Appl Environm Microbiol 2002; 68:2391–2396.

    Article  CAS  Google Scholar 

  35. Zengler K et al. Cultivating the uncultured. Proc Natl Acad Sci USA 2002; 99:15681–15686.

    Article  CAS  PubMed  Google Scholar 

  36. Thiericke R, Rohr J. Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat Prod Rep 1993; 10:265–89.

    Article  CAS  PubMed  Google Scholar 

  37. Schugerl K. Extraction of primary and secondary metabolites. Adv in Biochem Eng Biotechnol 2005; 92:1–48.

    CAS  Google Scholar 

  38. Frykman S, Tsuruta H, Galazzo J et al. Characterization of product capture resin during microbial cultivations. J Ind Microbiol Biotechnol 2006; 33:445–453.

    Article  CAS  PubMed  Google Scholar 

  39. Romero-Tabarez M, Jansen R, Sylla M et al. 7-O-Malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis, active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and a small colony variant of Burkholderia cepacia. Antimicrob Agents Chemother 2006; 5:1701–1709.

    Article  Google Scholar 

  40. Yarbrough GG, Taylor DP, Rowlands RT et al. Screening microbial metabolites for new drugs—theoretical and practical issues. J Antibiotics 1993; 46:535–544.

    CAS  Google Scholar 

  41. Fowler A, Swift D, Longman E et al. An evaluation of fluorescence polarization and lifetime discriminated polarization for high throughput screening of serine/threonine kinases. Anal Biochem 2002; 308:223–231.

    Article  CAS  PubMed  Google Scholar 

  42. Turek-Etienne TC, Small EC, Soh CS et al. Evaluation of fluorescent compound interference in 4 fluorescence polarization assays: 2 kinases, 1 protease and 1 phosphatase. J Biomol Screen 2003; 8:176–184.

    Article  CAS  PubMed  Google Scholar 

  43. Cummins LL, Shuo Chen, Blyn LB et al. Multitarget affinity/specificity screening of natural products: finding and characterizing high-affinity ligands from complex mixtures by using high-performance mass spectrometry. J Nat Prod 2003; 66:1186–1190.

    Article  CAS  PubMed  Google Scholar 

  44. Wolfender J-L, Ndjoko K, Hostettmann K. Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plan metabolites. J Chrom A 2003; 1000:437–455.

    Article  CAS  Google Scholar 

  45. Abel u, Koch C, Speitling M et al. Modern methods to produce natural-products libraries. Curr Opin Chem boil 2002; 6:453–458.

    Article  CAS  Google Scholar 

  46. Eldridge GR, Vervooth HC, Lee CM et al. High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem 2002; 74:3963–3971.

    Article  CAS  PubMed  Google Scholar 

  47. Strege MA. High performance liquid chromatographic-electrospray ionization mass spectrometric analyses for the integration of natural products with modern high-throughput screening. J Chrom B 1999; 725:67–68.

    Article  CAS  Google Scholar 

  48. Vuorela P, Leinonem M, Saikku P et al. Natural products in the process of finding new drug candidates. Curr Med Chem 2004; 11:1375–1389.

    CAS  PubMed  Google Scholar 

  49. Miller MA. Chemical database techniques in drug discovery. Nat Rev Drug Discov 2002; 1:220–227.

    Article  CAS  PubMed  Google Scholar 

  50. Nielsen KF, Smedsgaard J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chrom A 2003; 1002:111–136.

    Article  CAS  Google Scholar 

  51. Chapman and Hall Dictionary of Drugs for PC. Chemical Design Ltd, Chipping Norton: Oxfordshire, UK, 1996.

    Google Scholar 

  52. Parekh S, Vinci VA, Strobel RJ. Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 2002; 54:287–301.

    Article  Google Scholar 

  53. Blom KF, Glass B, Sparks R et al. Preparative LC-MS purification: improved compound-specific method optimization. J Comb Chem 2004; 6:874–883.

    Article  CAS  PubMed  Google Scholar 

  54. Weissman KJ, Leadlay PF. Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 2005; 3:925–936.

    Article  CAS  PubMed  Google Scholar 

  55. Griffiths BS, Ritz K, Glover LA. Broad-scale approaches to the determination of soil microbial community structure: application of the community DNA hybridization technique. Microb Ecol 1996; 31:269–280.

    Article  PubMed  Google Scholar 

  56. Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998; 180:4765–4774.

    CAS  PubMed  Google Scholar 

  57. Rondon MR, August PR, Bettermann AD et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. App Env Microbiol 2000; 66:2541–2547.

    Article  CAS  Google Scholar 

  58. De Long EF. Microbial communities genomics in the ocean. Nature Rev Microbiol 2005; 3:459–469.

    Article  Google Scholar 

  59. Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol 2003; 14:303–310.

    Article  CAS  PubMed  Google Scholar 

  60. Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 2005; 6:229–229.

    Article  PubMed  Google Scholar 

  61. Lorenz P, Eck J. Metagenomics and industrial applications. Nature Rev 2005; 3:510–516.

    Article  CAS  Google Scholar 

  62. Harvey A. Natural products in drug discovery and development. IDrugs 2005; 8:719–721.

    CAS  PubMed  Google Scholar 

  63. Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nature Rev Drug Discovery 2006; 5:321–332.

    Article  CAS  Google Scholar 

  64. Wang J, Soisson SM, Young K et al. Platensimycin is a selective Fab inhibitor with potent antibiotic properties. Nature 2006; 441:358–361.

    Article  CAS  PubMed  Google Scholar 

  65. Young K, Jayasuriya H, Ondeyka JG et al. Discovery of FabH/FabF inhibitors from natural products. Antimicrob Agents Chemother 2006; 50:519–526.

    Article  CAS  PubMed  Google Scholar 

  66. Payne DJ, Gwynn MN, Holmes DJ et al. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev 2007; 6:29–40.

    Article  CAS  Google Scholar 

  67. Haney SA, Alksne LE, Dunman PM et al. Genomics in anti-infective drug discovery—getting to endgame. Curr Pharmaceutical Design 2002; 8:10099–1118.

    Google Scholar 

  68. Monaghan RL, Barret JF. Antibacterial drug discovery. Then, now and the genomics future. Biochemical Pharmacol 2005; 7:901–909.

    Google Scholar 

  69. Pucci MJ. Use of genomics to select antibacterial targets. Biochem Pharmacol 2006; 71:1066–1072.

    Article  CAS  PubMed  Google Scholar 

  70. Schmid MB. Seeing is believing: the impact of structural genomics on antimicrobial drug discovery. Nature Rev Microbiol 2004; 2:739–746.

    Article  CAS  Google Scholar 

  71. D’Costa VM, McGrann KM, Hughes DW et al. Sampling the antibiotic resistome. Science 2006; 311:374–377.

    Article  PubMed  Google Scholar 

  72. Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Rev 2007; 5:175–186.

    Article  CAS  Google Scholar 

  73. Alksne LE, Projan SJ. Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 2003 11:625–636.

    Article  Google Scholar 

  74. Lee YM, Almqvist F, Hultgren SJ. Targeting virulence for antimicrobial chemotherapy. Current Opin Pharmacol 2003; 3:513–519.

    Article  CAS  Google Scholar 

  75. Marra A. Can virulence factors be viable antibacterial targets? Expert Rev Anti-infective Ther 2004; 2:61–72.

    Article  CAS  Google Scholar 

  76. Melstrom KA, Smith JW, Gamelli Rl et al. New perspectives for a new century: implications of pathogen responses for the future of antimicrobial therapy. J Burn Care Res 2006; 27:251–264.

    Article  PubMed  Google Scholar 

  77. Butcher EC. Can cell systems biology rescue drug discovery? Nature Rev Drug Discovery 2005; 4:461–467.

    Article  CAS  Google Scholar 

  78. Entzeroth E. Emerging trends in high-throughput screening. Curr Opinion Pharmacol 2003; 3:522–529.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Molinari, G. (2009). Natural Products in Drug Discovery: Present Status and Perspectives. In: Guzmán, C.A., Feuerstein, G.Z. (eds) Pharmaceutical Biotechnology. Advances in Experimental Medicine and Biology, vol 655. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1132-2_2

Download citation

Publish with us

Policies and ethics