Skip to main content

The ATP-Binding Cassette Transporter ABCA4: Structural and Functional Properties and Role in Retinal Disease

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 703))

Abstract

ATP-binding cassette transporters (ABC transporters) utilize the energy of ATP hydrolysis to translocate an unusually diverse set of substrates across cellular membranes. ABCA4, also known as ABCR, is a ∼250 kDa single-chain ABC transporter localized to the disk margins of vertebrate photoreceptor outer segments. It is composed of two symmetrically organized halves, each comprising six membrane-spanning helices, a large glycosylated exocytoplasmic domain located inside the disk, and a cytoplasmic domain with an ATP-binding cassette. Hundreds of mutations in ABCA4 are known to cause impaired vision and blindness such as in Stargardt disease as well as related disorders. Biochemical and animal model studies in combination with patient analyses suggest that the natural substrate of ABCA4 is retinylidene-phosphatidylethanolamine (N-retinylidene-PE), a precursor of potentially toxic diretinal compounds. ABCA4 prevents accumulation of N-retinylidene-PE inside the disks by transporting it to the cytoplasmic side of the disk membrane where it can dissociate, allowing the released all-trans-retinal to enter the visual cycle. The pathogenesis of diseases caused by mutations in ABCA4 is complex, comprising a loss-of-function component as well as photoreceptor stress caused by protein mislocalization and misfolding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn J, Molday RS (2000) Purification and characterization of ABCR from bovine rod outer segments. Methods Enzymol 315:864–879

    Article  PubMed  CAS  Google Scholar 

  • Ahn J, Wong JT, Molday RS (2000) The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy. J Biol Chem 275:20399–20405

    Article  PubMed  CAS  Google Scholar 

  • Ahn J, Beharry S, Molday LL, Molday RS (2003) Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain. J Biol Chem 278:39600–39608

    Article  PubMed  CAS  Google Scholar 

  • Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y, Tabata N, Matsuoka K, Sasaki R, Sawamura D, Shimizu H (2005) Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 115:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R (2000) Simple and complex ABCR: genetic predisposition to retinal disease. Am J Hum Genet 67:793–799

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein PS, Peiffer A, Zabriskie NA, Li Y, Hutchinson A, Dean M, Lupski JR, Leppert M (1997a) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR (1997b) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  PubMed  CAS  Google Scholar 

  • Azarian SM, Travis GH (1997) The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt’s disease (ABCR). FEBS Lett 409:247–252

    Article  PubMed  CAS  Google Scholar 

  • Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279:53972–53979

    Article  PubMed  CAS  Google Scholar 

  • Bhongsatiern J, Ohtsuki S, Tachikawa M, Hori S, Terasaki T (2005) Retinal-specific ATP-binding cassette transporter (ABCR/ABCA4) is expressed at the choroid plexus in rat brain. J Neurochem 92:1277–1280

    Article  PubMed  CAS  Google Scholar 

  • Biswas EE (2001) Nucleotide binding domain 1 of the human retinal ABC transporter functions as a general ribonucleotidase. Biochemistry 40:8181–8187

    Article  PubMed  CAS  Google Scholar 

  • Biswas EE, Biswas SB (2000) The C-terminal nucleotide binding domain of the human retinal ABCR protein is an adenosine triphosphatase. Biochemistry 39:15879–15886

    Article  PubMed  CAS  Google Scholar 

  • Biswas-Fiss EE (2003) Functional analysis of genetic mutations in nucleotide binding domain 2 of the human retina specific ABC transporter. Biochemistry 42:10683–10696

    Article  PubMed  CAS  Google Scholar 

  • Biswas-Fiss EE (2006) Interaction of the nucleotide binding domains and regulation of the ATPase activity of the human retina specific ABC transporter, ABCR. Biochemistry 45:3813–3823

    Article  PubMed  CAS  Google Scholar 

  • Bungert S, Molday LL, Molday RS (2001) Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites. J Biol Chem 276:23539–23546

    Article  PubMed  CAS  Google Scholar 

  • Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB, Windsor EA, Roman AJ, Sumaroka A, Steinberg JD, Jacobson SG, Stone EM, Palczewski K (2009) ABCA4 disease progression and a proposed strategy for gene therapy. Hum Mol Genet 18:931–941

    PubMed  CAS  Google Scholar 

  • Davidson AL, Chen J (2004) ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268

    Article  PubMed  CAS  Google Scholar 

  • Dawson RJ, Hollenstein K, Locher KP (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65:250–257

    Article  PubMed  CAS  Google Scholar 

  • Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW (2002) Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J Biol Chem 277:33178–33187

    Article  PubMed  CAS  Google Scholar 

  • Gerber S, Comellas-Bigler M, Goetz BA, Locher KP (2008) Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321:246–250

    Article  PubMed  CAS  Google Scholar 

  • Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7

    Article  PubMed  Google Scholar 

  • Harpaz Y, Gerstein M, Chothia C (1994) Volume changes on protein folding. Structure 2:641–649

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Ho MT, Massey JB, Pownall HJ, Anderson RE, Hollyfield JG (1989) Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes. J Biol Chem 264:928–935

    PubMed  CAS  Google Scholar 

  • Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, Cantz M (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40:737–743

    PubMed  CAS  Google Scholar 

  • Illing M, Molday LL, Molday RS (1997) The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310

    Article  PubMed  CAS  Google Scholar 

  • Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem 280:39732–39739

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi K, Endo H, Kobayashi H, Takio K, Igarashi K (1995) Spermidine-preferential uptake system in Escherichia coli. ATP hydrolysis by PotA protein and its association with membrane. J Biol Chem 270:25377–25382

    Article  PubMed  CAS  Google Scholar 

  • Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166

    Article  PubMed  CAS  Google Scholar 

  • Kolling R, Losko S (1997) The linker region of the ABC-transporter Ste6 mediates ubiquitination and fast turnover of the protein. EMBO J 16:2251–2261

    Article  PubMed  CAS  Google Scholar 

  • Kos V, Ford RC (2009) The ATP-binding cassette family: a structural perspective. Cell Mol Life Sci 66:3111–3126

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lewis RA, Shroyer NF, Singh N, Allikmets R, Hutchinson A, Li Y, Lupski JR, Leppert M, Dean M (1999) Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Am J Hum Genet 64:422–434

    Article  PubMed  CAS  Google Scholar 

  • Linton KJ, Higgins CF (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 453:555–567

    Article  PubMed  CAS  Google Scholar 

  • Maeda A, Maeda T, Sun W, Zhang H, Baehr W, Palczewski K (2007) Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proc Natl Acad Sci USA 104:19565–19570

    Article  PubMed  CAS  Google Scholar 

  • Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693

    Article  PubMed  CAS  Google Scholar 

  • Maeda A, Golczak M, Maeda T, Palczewski K (2009a) Limited roles of Rdh8, Rdh12 and Abca4 on all-trans-retinal clearance in mouse retina. Invest Ophthalmol Vis Sci 50(11):5435–5443

    Article  PubMed  Google Scholar 

  • Maeda A, Maeda T, Golczak M, Chou S, Desai A, Hoppel CL, Matsuyama S, Palczewski K (2009b) Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J Biol Chem 284:15173–15183

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Maeda A, Matosky M, Okano K, Roos S, Tang J, Palczewski K (2009c) Evaluation of potential therapies for a mouse model of human age-related macular degeneration caused by delayed all-trans-retinal clearance. Invest Ophthalmol Vis Sci 50:4917–4925

    Article  PubMed  Google Scholar 

  • Martinez LO, Agerholm-Larsen B, Wang N, Chen W, Tall AR (2003) Phosphorylation of a pest sequence in ABCA1 promotes calpain degradation and is reversed by ApoA-I. J Biol Chem 278:37368–37374

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, Dean M, Vilageliu L, Gonzalez-Duarte R, Balcells S (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18:11–12

    Article  PubMed  CAS  Google Scholar 

  • Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97:7154–7159

    Article  PubMed  CAS  Google Scholar 

  • Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH (2001) Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1685–1690

    PubMed  CAS  Google Scholar 

  • Molday RS (2007) ATP-binding cassette transporter ABCA4: molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr 39:507–517

    Article  PubMed  CAS  Google Scholar 

  • Molday RS, Molday LL (1979) Identification and characterization of multiple forms of rhodopsin and minor proteins in frog and bovine rod outer segment disc membranes. Electrophoresis, lectin labeling, and proteolysis studies. J Biol Chem 254:4653–4660

    PubMed  CAS  Google Scholar 

  • Molday LL, Rabin AR, Molday RS (2000) ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 25:257–258

    Article  PubMed  CAS  Google Scholar 

  • Molday RS, Zhong M, Quazi F (2009) The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim Biophys Acta 1791:573–583

    Article  PubMed  CAS  Google Scholar 

  • Mourez M, Hofnung M, Dassa E (1997) Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 16:3066–3077

    Article  PubMed  CAS  Google Scholar 

  • Mustafi D, Engel AH, Palczewski K (2009) Structure of cone photoreceptors. Prog Retin Eye Res 28:289–302

    Article  PubMed  CAS  Google Scholar 

  • Nickell S, Park PS, Baumeister W, Palczewski K (2007) Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177:917–925

    Article  PubMed  CAS  Google Scholar 

  • Noe J, Hagenbuch B, Meier PJ, St-Pierre MV (2001) Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 33:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Jager S, Buczylko J, Crouch RK, Bredberg DL, Hofmann KP, Asson-Batres MA, Saari JC (1994) Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction. Biochemistry 33:13741–13750

    Article  PubMed  CAS  Google Scholar 

  • Papermaster DS, Schneider BG, Zorn MA, Kraehenbuhl JP (1978) Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks. J Cell Biol 78:415–425

    Article  PubMed  CAS  Google Scholar 

  • Papermaster DS, Reilly P, Schneider BG (1982) Cone lamellae and red and green rod outer segment disks contain a large intrinsic membrane protein on their margins: an ultrastructural immunocytochemical study of frog retinas. Vision Res 22:1417–1428

    Article  PubMed  CAS  Google Scholar 

  • Paskowitz DM, LaVail MM, Duncan JL (2006) Light and inherited retinal degeneration. Br J Ophthalmol 90:1060–1066

    Article  PubMed  CAS  Google Scholar 

  • Pawar AS, Qtaishat NM, Little DM, Pepperberg DR (2008) Recovery of rod photoresponses in ABCR-deficient mice. Invest Ophthalmol Vis Sci 49:2743–2755

    Article  PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  • Radu RA, Mata NL, Bagla A, Travis GH (2004) Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci USA 101:5928–5933

    Article  PubMed  CAS  Google Scholar 

  • Rando RR, Bangerter FW (1982) The rapid intermembraneous transfer of retinoids. Biochem Biophys Res Commun 104:430–436

    Article  PubMed  CAS  Google Scholar 

  • Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    Article  PubMed  CAS  Google Scholar 

  • Roof DJ, Heuser JE (1982) Surfaces of rod photoreceptor disk membranes: integral membrane components. J Cell Biol 95:487–500

    Article  PubMed  CAS  Google Scholar 

  • Rozet JM, Gerber S, Souied E, Perrault I, Chatelin S, Ghazi I, Leowski C, Dufier JL, Munnich A, Kaplan J (1998) Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur J Hum Genet 6:291–295

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Postel EA, Agarwal A, Allen IC Jr, Walters SN, De la Paz MA, Scott WK, Haines JL, Pericak-Vance MA, Gilbert JR (2003) Detailed analysis of allelic variation in the ABCA4 gene in age-related maculopathy. Invest Ophthalmol Vis Sci 44:2868–2875

    Article  PubMed  Google Scholar 

  • See RH, Caday-Malcolm RA, Singaraja RR, Zhou S, Silverston A, Huber MT, Moran J, James ER, Janoo R, Savill JM, Rigot V, Zhang LH, Wang M, Chimini G, Wellington CL, Tafuri SR, Hayden MR (2002) Protein kinase A site-specific phosphorylation regulates ATP-binding cassette A1 (ABCA1)-mediated phospholipid efflux. J Biol Chem 277:41835–41842

    Article  PubMed  CAS  Google Scholar 

  • Shroyer NF, Lewis RA, Allikmets R, Singh N, Dean M, Leppert M, Lupski JR (1999) The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Res 39:2537–2544

    Article  PubMed  CAS  Google Scholar 

  • Sparrow JR, Wu Y, Kim CY, Zhou J (2009) Phospholipid meets all-trans-retinal: the making of RPE bisretinoids. J Lipid Res 51(2):247–261

    Article  PubMed  Google Scholar 

  • Suarez T, Biswas SB, Biswas EE (2002) Biochemical defects in retina-specific human ATP binding cassette transporter nucleotide binding domain 1 mutants associated with macular degeneration. J Biol Chem 277:21759–21767

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM (2009) Focus on molecules: ABCA4 (ABCR) – an import-directed photoreceptor retinoid flipase. Exp Eye Res 89:602–603

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Nathans J (1997) Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 17:15–16

    Article  PubMed  Google Scholar 

  • Sun H, Molday RS, Nathans J (1999) Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem 274:8269–8281

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Smallwood PM, Nathans J (2000) Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet 26:242–246

    Article  PubMed  CAS  Google Scholar 

  • Szuts EZ (1985) Light stimulates phosphorylation of two large membrane proteins in frog photoreceptors. Biochemistry 24:4176–4184

    Article  PubMed  CAS  Google Scholar 

  • Tachikawa M, Watanabe M, Hori S, Fukaya M, Ohtsuki S, Asashima T, Terasaki T (2005) Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J Neurochem 95:294–304

    Article  PubMed  CAS  Google Scholar 

  • Trompier D, Alibert M, Davanture S, Hamon Y, Pierres M, Chimini G (2006) Transition from dimers to higher oligomeric forms occurs during the ATPase cycle of the ABCA1 transporter. J Biol Chem 281:20283–20290

    Article  PubMed  CAS  Google Scholar 

  • van Driel MA, Maugeri A, Klevering BJ, Hoyng CB, Cremers FP (1998) ABCR unites what ophthalmologists divide(s). Ophthalmic Genet 19:117–122

    Article  PubMed  Google Scholar 

  • Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3:281–290

    Article  PubMed  CAS  Google Scholar 

  • Walia S, Fishman GA (2009) Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet 30:63–68

    Article  PubMed  Google Scholar 

  • Warren MS, Zerangue N, Woodford K, Roberts LM, Tate EH, Feng B, Li C, Feuerstein TJ, Gibbs J, Smith B, de Morais SM, Dower WJ, Koller KJ (2009) Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 59:404–413

    Article  PubMed  CAS  Google Scholar 

  • Weleber RG (1994) Stargardt’s macular dystrophy. Arch Ophthalmol 112:752–754

    Article  PubMed  CAS  Google Scholar 

  • Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  PubMed  CAS  Google Scholar 

  • Wiszniewski W, Zaremba CM, Yatsenko AN, Jamrich M, Wensel TG, Lewis RA, Lupski JR (2005) ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet 14:2769–2778

    Article  PubMed  CAS  Google Scholar 

  • Zarubica A, Trompier D, Chimini G (2007) ABCA1, from pathology to membrane function. Pflugers Arch 453:569–579

    Article  PubMed  CAS  Google Scholar 

  • Zhong M, Molday LL, Molday RS (2009) Role of the C terminus of the photoreceptor ABCA4 transporter in protein folding, function, and retinal degenerative diseases. J Biol Chem 284:3640–3649

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH grants EY09339, P30 EY11373, and EY08123). We thank members of the Palczewski laboratory for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav Tsybovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Tsybovsky, Y., Molday, R.S., Palczewski, K. (2010). The ATP-Binding Cassette Transporter ABCA4: Structural and Functional Properties and Role in Retinal Disease. In: Lambris, J., Adamis, A. (eds) Inflammation and Retinal Disease: Complement Biology and Pathology. Advances in Experimental Medicine and Biology, vol 703. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5635-4_8

Download citation

Publish with us

Policies and ethics