Skip to main content

Of Model Hosts and Man: Using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as Model Hosts for Infectious Disease Research

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 710))

Abstract

The use of invertebrate model hosts has increased in popularity due to numerous advantages of invertebrates over mammalian models, including ethical, logistical and budgetary features. This review provides an introduction to three model hosts, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the larvae of Galleria mellonella, the greater wax moth. It highlights principal experimental advantages of each model, for C. elegans the ability to run high-throughput assays, for D. melanogaster the evolutionarily conserved innate immune response, and for G. mellonella the ability to conduct experiments at 37°C and easily inoculate a precise quantity of pathogen. It additionally discusses recent research that has been conducted with each host to identify pathogen virulence factors, study the immune response, and evaluate potential antimicrobial compounds, focusing principally on fungal pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alarco AM et al (2004) Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol 172:5622–5628

    PubMed  CAS  Google Scholar 

  • Apidianakis Y et al (2004) Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot Cell 3:413–419

    Article  PubMed  CAS  Google Scholar 

  • Bazopoulou D, Tavernarakis N (2009) The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 137:39–46

    Article  PubMed  CAS  Google Scholar 

  • Begun J, Sifri CD, Goldman S, Calderwood SB, Ausubel FM (2005) Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model. Infect Immun 73:872–877

    Article  PubMed  CAS  Google Scholar 

  • Breger J et al (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3:e18

    Article  PubMed  Google Scholar 

  • Brennan M, Thomas DY, Whiteway M, Kavanagh K (2002) Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34:153–157

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Chamilos G et al (2006) Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis 193:1014–1022

    Article  PubMed  CAS  Google Scholar 

  • Coleman JJ et al (2010) Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 5:321–332

    Article  PubMed  CAS  Google Scholar 

  • Cotter G, Doyle S, Kavanagh K (2000) Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169

    Article  PubMed  CAS  Google Scholar 

  • Cowen LE et al (2009) Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA 106:2818–2823

    Article  PubMed  CAS  Google Scholar 

  • Diaz MH et al (2008) Pseudomonas aeruginosa induces localized immunosuppression during pneumonia. Infect Immun 76:4414–4421

    Article  PubMed  CAS  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    Article  PubMed  CAS  Google Scholar 

  • Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fuchs BB et al (2010) Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes Infect 12:488–496

    Article  PubMed  CAS  Google Scholar 

  • Garvis S et al (2009) Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence. PLoS Pathog 5:e1000540

    Article  PubMed  Google Scholar 

  • Giacomotto J, Ségalat L (2010) High-throughput screening and small animal models, where are we? Br J Pharmacol 160:204–216

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann J (2003) The immune response of Drosophila. Nature 426:33–38

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh K, Fallon JP (2010) Galleria mellonella larvae as models for studying fungal virulence. Fungal Biol Rev 24:79–83

    Article  Google Scholar 

  • Kurz CL et al (2003) Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 22:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B (2004) The road to toll. Nat Rev Immunol 4:521–527

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 23:14614–14619

    Article  Google Scholar 

  • Lindsay MA (2003) Target discovery. Nat Rev Drug Discov 2:831–838

    Article  PubMed  CAS  Google Scholar 

  • Lionakis MS et al (2005) Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis 191:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56

    Article  PubMed  CAS  Google Scholar 

  • Mowlds P, Kavanagh K (2008) Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165:5–12

    Article  PubMed  Google Scholar 

  • Moy T et al (2009) High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 4:527–533

    Article  PubMed  CAS  Google Scholar 

  • Mueller NJ, Fishman JA (2003) Asymptomatic pulmonary cryptococcosis in solid organ transplantation: report of four cases and review of the literature. Transpl Infect Dis 5:140–143

    Article  PubMed  CAS  Google Scholar 

  • Mylonakis E (2008) Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia 165:1–3

    Article  PubMed  Google Scholar 

  • Mylonakis E et al (2004) Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol Microbiol 54:407–419

    Article  PubMed  CAS  Google Scholar 

  • Mylonakis E et al (2005) Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73:3842–3850

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan D, Vergunst A (2010) Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 13:79–85

    Article  PubMed  Google Scholar 

  • Okoli I et al (2009) Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay. PLoS One 4:e7025

    Article  PubMed  Google Scholar 

  • Pukkila-Worley R, Peleg A, Tampakakis E, Mylonakis E (2009) Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 8:1750–1758

    Article  PubMed  CAS  Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BG, Priess JR (1997) C. elegans II, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Rizki RM, Rizki TM (1984) Selective destruction of a host blood cell type by a parasitoid wasp. Proc Natl Acad Sci USA 81:6154–6158

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Moran C, McCann M, Kavanagh K (2009) Use of Galleria mellonella larvae to evaluate the in vivo anti-fungal activity of [Ag2(mal)(phen)3]. Biometals 22:461–467

    Article  PubMed  CAS  Google Scholar 

  • Sekiya M et al (2008) A cyclopentanediol analogue selectively suppresses the conserved innate immunity pathways, Drosophila IMD and TNF-alpha pathways. Biochem Pharmacol 75:2165–2174

    Article  PubMed  CAS  Google Scholar 

  • Spring DR (2005) Chemical genetics to chemical genomics: small molecules offer big insights. Chem Soc Rev 34:472–482

    Article  PubMed  CAS  Google Scholar 

  • Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96:2408–2413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios Mylonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Glavis-Bloom, J., Muhammed, M., Mylonakis, E. (2012). Of Model Hosts and Man: Using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as Model Hosts for Infectious Disease Research. In: Mylonakis, E., Ausubel, F., Gilmore, M., Casadevall, A. (eds) Recent Advances on Model Hosts. Advances in Experimental Medicine and Biology, vol 710. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5638-5_2

Download citation

Publish with us

Policies and ethics