Skip to main content

The Superior Olivary Complex and Lateral Lemniscal Nuclei

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 1))

Abstract

The superior olivary complex (SOC) is a group of interrelated nuclei located on each side of the brainstem at the level of the cochlear nuclei (CN). The SOC lies just rostral to the facial nucleus and between the roots of the facial and abducens nerves. The SOC is the first level of the auditory system at which there is integration of information from the two ears onto individual neurons. The integrated information is transferred to other cells within the SOC for further processing and to higher centers, the nuclei of the lateral lemniscus (LL) and inferior colliculus (IC), as well as back down to the CN and cochlea. The lateral lemnisci are bands of fibers running from the lateral side and rostral end of each SOC to the ipsilateral IC. Groups of neurons, the LL nuclei, are located within the LL. Axons from the CN and trapezoid body also contribute to the LL. The LL nuclei integrate information directly from the CN, from the SOC, and from the contralateral LL before transmitting it to the IC. The LL neurons may also interact with reticular formation pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183: 519–538.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC (1983a) Cytology of periolivary cells and the organization of their projections in the cat. J Comp Neurol 215: 275–289.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC (1983b) Multipolar cells in the ventral cochlear nucleus project to the dorsal cochlear nucleus and the inferior colliculus. Neurosci Lett 37: 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC (1986a) Neuronal morphology in the human cochlear nucleus. Arch Otolaryngol Head and Neck Surg 112: 1253–1261.

    CAS  Google Scholar 

  • Adams JC (1986b) Cells of origin of cochlear efferents in human. ARO Absts 9: 5.

    Google Scholar 

  • Adams JC, Mugnaini E (1984) Dorsal nucleus of the lateral lemniscus; A nucleus of GABAergic projection neurons. Brain Res Bull 13: 585–590.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hear Res 49: 281–298.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC, Warr WB (1976) Origins of axons in the cat’s acoustic strias determined by injection of horseradish peroxidase into severed tracts. J Comp Neurol 170: 107–122.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC, Wenthold RJ (1987) Immunostaining of ascending auditory pathways with glycine antiserum. ARO Absts 10: 63.

    Google Scholar 

  • Aitkin LM, Kenyon CE (1981) The auditory brainstem of a marsupial. Brain Behav Evol 19: 126–143.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Phillips SC (1984) Is the inferior colliculus an obligatory relay in the cat auditory system? Neurosci Lett 44: 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Schuck D (1985) Low frequency neurons in the lateral central nucleus of the cat inferior colliculus receive their input predominantly from the medial superior olive. Hearing Res 17: 87–93.

    Article  CAS  Google Scholar 

  • Aitkin LM, Anderson DJ, Brugge JF (1970) Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. J Neurophysiol 33: 421–440.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Bush BMH, Gates RG (1978) The auditory midbrain of a marsupial: the brush-tailed possum (Tichosurus vulpecula). Brain Res 150: 29–44.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Byers M, Nelson JE (1986) Brain stem auditory nuclei and their connections in a carnivorous marsupial, the northern native cat (Dasyurus hallucatus). Brain Behav Evol 29 (1–2): 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Horseman BG, Bush BMH (1982) Some aspects of the auditory pathway and audition in the European mole, Talpa europaea. Brain Behav Evol 21: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Irvine DRF, Webster WR (1984) Central neural mechanisms of hearing. In: Handbook of Physiology, The Nervous System, Vol III. Sensory Processes, Part 2. pp. 675–737, section eds Brookhart JM, Mountcastle VM. Vol. ed. I. Darian-Smith, exec. ed. S.R. Geiger. American Physiological Society, Bethesda.

    Google Scholar 

  • Altschuler RA, Parakkal MH, Fex J (1983) Localization of enkephalin-like im- munoreactivity in acetylcholinesterase positive cells in the guinea pig lateral superior olivary complex that project to the cochlea. Neurosci 9: 621–630.

    Article  CAS  Google Scholar 

  • Arends JJA, Zeigler HP (1986) Anatomical identification of an auditory pathway from a nucleus of the lateral lemniscal system to the frontal telencephalon (nucleus basalis) of the pigeon. Brain Res 398: 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff A, Muller M, Ott H (1988) Origin of cochlea efferents in some gerbil species. A comparative anatomical study with fluorescent tracers. Exp Brain Res 71: 252–261.

    PubMed  CAS  Google Scholar 

  • Babmindra VP, Zharskaya VD (1980) [Use of antero- and retrograde horseradish peroxidase transport to analyze interneuronal connections of the bat auditory system]. Arkh Anat Gistol Embriol 78: 42–48.

    Google Scholar 

  • Babmindra VP, Zharskaya VD (1982) Use of anterio- and retrograde axonal transport of horseradish peroxidase in analyzing interneuronal connections in the bat auditory system. Neurosci Behav Physiol 12: 423–428.

    Article  PubMed  CAS  Google Scholar 

  • Belekhova MG, Zharskaya VD, Khachunts AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J Hirn- forsch 26:127–152. In English.

    PubMed  CAS  Google Scholar 

  • Bishop AL, Henson Jr OW (1987) The efferent cochlear projections of the superior olivary complex in the mustached bat. Hear Res 31: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe SC, Snead CR, Helfert RH, Prasad V, Wenthold RJ, Altschuler RA (1990) Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior olive is glycinergic. Brain Res 517: 189–194.

    Article  PubMed  Google Scholar 

  • Borg E (1973a) Neuroanatomical study of the brain stem auditory system of the rabbit. Part I. Ascending connections. Acta Morphol Neerl Scand 11: 31–48.

    PubMed  CAS  Google Scholar 

  • Borg E (1973b) Neuroanatomical study of the brain stem auditory system of the rabbit. Part II. Descending connections. Acta Morphol Neerl Scand 11: 49–62.

    PubMed  CAS  Google Scholar 

  • Brawer JR, Morest, DK, Kane E (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155: 251–300.

    Article  PubMed  CAS  Google Scholar 

  • Brouwer B, von Walree D (1914) Uber den Hirnstamm eines Taubstummen. Folia Neurobiol 8: 589–600.

    Google Scholar 

  • Brown JC, Howlett B (1972) The olivo-cochlear tract in the rat and its bearing on the homologies of some constituent cell groups of the mammalian superior olivary complex: A thiocholine study. Acta Anat 83: 505–526.

    Article  PubMed  CAS  Google Scholar 

  • Brown MC (1985) Peripheral projections of labelled efferent nerve fibers in the guinea pig cochlea: an anatomical study. ARO Absts 8: 9.

    CAS  Google Scholar 

  • Browner RH, Rubinson K (1977) The cytoarchitecture of the torus semicircularis in the Tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 176: 539–557.

    Article  PubMed  CAS  Google Scholar 

  • Browner RH, Webster DB (1975) Projections from the trapezoid body and the superior olivary complex of the kangaroo rat (Dipodomys merriami). Brain Behav Evol 11: 322–354.

    Article  PubMed  CAS  Google Scholar 

  • Brunso-Bechtold JK, Henkel CK, Linville C (1990) Synaptic organization in the adult ferret medial superior olive. J Comp Neurol 294: 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3: 2365–2380.

    PubMed  CAS  Google Scholar 

  • Cant NB (1984) The fine structure of the lateral superior olivary nucleus of the cat. J Comp Neurol 227: 63–77.

    Article  PubMed  CAS  Google Scholar 

  • Cant NB (1984) The fine structure of the lateral superior olivary nucleus of the cat. J Comp Neurol 227: 63–77.

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247: 457–476.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MB, Chang L, Pereira AB, Hersh LB, Bruce G, Wu JY (1987) Vestibular and cochlear efferent neurons in the monkey identified by immunocytochemical methods. Brain Res 408 (1–2): 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Casey MA, Feldman ML (1985) Aging in the rat medial nucleus of the trapezoid body. II. Electron Microscopy. J Comp Neurol 232: 401–413.

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Faingold CL (1989) Non-N-Methyl-D-aspartate receptors may mediate ipsilateral excitation at lateral superior olivary synapses. Brain Res 503: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Covey E, Vater M (1988) Connections of the superior olivary complex in the rufous horseshoe bat, Rhinolophus rouxi. J Comp Neurol 278 (3): 313–329.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Kobler JB, Isbey SF, Covey E (1989) Central acoustic tract in an echolocating bat: An extralemniscal auditory pathway to the thalamus. J Comp Neurol 287: 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Castex A, Marchand L (1906) Etude anatomique et histologique sur la surdimutie. Bull Laryngol Otol Rhinol 9: 81–99.

    Google Scholar 

  • Ciriello J, Caverson MM, Park DH (1986) Immunohistochemical identification of noradrenaline- and adrenaline-synthesizing neurons in the cat ventrolateral medulla. J Comp Neurol 253: 216–230.

    Article  PubMed  CAS  Google Scholar 

  • Cole KS, Robertson D, Johnstone B (1987) Brainstem location of bilaterally projecting olivocochlear neurons in the guinea pig. ARO Absts 10: 216.

    Google Scholar 

  • Conlee JW (1979) Descending auditory projections from the inferior colliculus and nuclei of the lateral lemniscus in the cat. Ph.D. dissertation, Chicago: University of Chicago.

    Google Scholar 

  • Conlee JW, Parks TN (1986) Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken. Brain Res 367: 96–113.

    Article  PubMed  CAS  Google Scholar 

  • Covey E, Casseday JH (1986) Connectional basis for frequency representation in the nuclei of the lateral lemniscus of the bat, Eptesicus fuscus. J Neurosci 6: 2926–40.

    PubMed  CAS  Google Scholar 

  • Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: Parallel pathways for analyzing temporal features of sound. J Neurosci 11: 3456–3470.

    PubMed  CAS  Google Scholar 

  • Covey E, Jones DR, Casseday JH (1984) Projections from the superior olivary complex to the cochlear nucleus in the tree shrew. J Comp Neurol 226: 289–305.

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Gendelman DS, Tischler MN, Gendelman PM (1982) A primary acoustic startle circuit—lesion and stimulation studies. J Neurosci 2: 791–805.

    PubMed  CAS  Google Scholar 

  • Donaldson HH (1890) Anatomical observations on the brain and several sense- organs of the blind deaf-mute, Laura Dewey Bridgman. Am J Psychol 3: 293–342.

    Article  Google Scholar 

  • Donaldson HH (1891) Anatomical observations on the brain and several sense- organs of the blind, deaf-mute, Laura Dewey Bridgman. Am J Psychol 4: 248–294.

    Article  Google Scholar 

  • Druga R, Syka J (1984) Projections from auditory structures to the superior colliculus in the rat. Neurosci Lett 45: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Dublin WB (1976) Fundamentals of Sensorineural Auditory Pathology. Spring- field, IL: Charles C Thomas.

    Google Scholar 

  • Dupont J, Geffard M, Calas A, Aran J-M (1990) Immunohistochemical evidence for GABAergic cell bodies in the medial nucleus of the trapezoid body and in the lateral vestibular nucleus in the guinea pig brainstem. Neurosci Lett 111: 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Edwards SB, Ginsburgh CL, Henkel CK, Stein BE (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184: 309–330.

    Article  PubMed  CAS  Google Scholar 

  • Elverland HH (1977) Descending connections between the superior olivary and cochlear nuclear complexes in the cat, studied by autoradiographic and horseradish peroxidase methods. Exp Brain Res 27: 397–412.

    Article  PubMed  CAS  Google Scholar 

  • Elverland HH (1978) Ascending and intrinsic projections of the superior olivary complex in the cat. Exp Brain Res 32: 117–134.

    Article  PubMed  CAS  Google Scholar 

  • Faye-Lund H (1986) Projection from the inferior colliculus to the superior olivary complex in the albino rat. Anat and Embryol 175: 35–52.

    Article  CAS  Google Scholar 

  • Feng AS (1986a) Afferent and efferent innervation patterns of the superior olivary nucleus of the leopard frog. Brain Res 364: 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS (1986b) Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. Brain Res 367: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Karapas F (1967) The course and termination of the striae of Mon- akow and Held in the cat. J Comp Neurol 131: 371–386.

    Article  Google Scholar 

  • Ferraro JA, Minckler J (1977) The human lateral lemniscus and its nuclei. The human auditory pathways: A quantitative study. Brain Lang 4: 277–294.

    Article  PubMed  CAS  Google Scholar 

  • Fex J, Altschuler RA (1985) Immunocytochemistry of the mammalian cochlea: results and expectations. In Drescher D (ed) Auditory Biochemistry, Springfield, 111: Charles Thomas, pp. 5–28.

    Google Scholar 

  • Finlayson PG, Caspary DM (1989) Synaptic potentials of chinchilla lateral superior olivary neurons. Hear Res 38: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Foster RE, Hall WC (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J Comp Neurol 178: 783–832.

    Article  PubMed  CAS  Google Scholar 

  • Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73: 263–84.

    Article  PubMed  CAS  Google Scholar 

  • Fuller PM, Ebbesson SOE (1973) Projections of the primary and secondary auditory fibers in the bullfrog (Rana catesbiana). Proc Soc Neurosci 333.

    Google Scholar 

  • Glendenning KK (1987) Asymmetries in lateral superior olive projection to inferior colliculus. ARO Absts 10: 217.

    Google Scholar 

  • Glendenning KK, Baker BN (1991) Neurochemical basis of the acoustic chiasm. ARO Absts 14: 32.

    Google Scholar 

  • Glendenning KK, Masterton RB (1980) Afferent and efferent connections of the lateral superior olivary nucleus in the cat. Anat Rec 196: 63–64.

    Google Scholar 

  • Glendenning KK, Masterton RB (1983) Acoustic chiasm: efferent projections of the lateral superior olive. J Neurosci 3: 1521–1537.

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp Neurol 197: 673–703.

    Article  PubMed  CAS  Google Scholar 

  • Glendenning KK, Hutson KA, Nudo RJ, Masterton RB (1985) Acoustic chiasm II. Anatomical basis of binaurality in the lateral superior olive of cat. J Comp Neurol 232: 261–285.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DA, Carter J A, Berger SJ, Lowry OH, Matschinsky FM (1977) Quantitative histochemical mapping of candidate transmitter amino acids in cat cochlear nucleus. J Histochem Cytochem 25: 417–431.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: An anatomical and electrophysiological study. J Neurophysiol 31: 635–636.

    Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32: 613–636.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Moore RY (1967) Ascending projections of the lateral lemniscus in the cat and monkey. J Comp Neurol 129: 143–156.

    Article  Google Scholar 

  • Gorodetskaia ON, Bibikov NG (1985) Responses of auditory neurons of the medulla oblongata of the frog to presentation of tones with sinusoidal amplitude modulation. Neirofiziol 17: 390–396.

    CAS  Google Scholar 

  • Grafova I, Ottersen OP, Rinvik E (1978) Mesencephalic and diencephalic afferents to the superior colliculus and periaquaductal gray substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat. Brain Res 146: 205–220.

    Article  Google Scholar 

  • Guinan J J, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex. II: Locations of unit categories and tonotopic organization. Int J Neurosci 4: 147–166.

    Article  Google Scholar 

  • Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258: 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, JM (1978) The auditory system of the brainstem. In: Naunton, RF, Fernandez, C (eds) Evoked Electrical Activity in the Auditory Nervous System, New York: Academic Press, pp. 353–368.

    Google Scholar 

  • Harrison JM, Feldman ML (1970) Anatomical aspects of the cochlear nucleus and superior olivary complex. In Neff WD (ed) Contributions to Sensory Physiology, New York: Academic Press, pp. 95–143.

    Google Scholar 

  • Harrison JM, Irving R (1966a) Ascending connections of anterior ventral cochlear nucleus in the rat. J Comp Neurol 126: 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966b) Organization of the posterior ventral cochlear nucleus in the rat. J Comp Neurol 126: 391–403.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Warr WB (1962) A study of the cochlear nuclei and ascending auditory pathways of the medulla. J Comp Neurol 119: 341–380.

    Article  PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1984) Sound localization in large mammals: localization of complex sounds by horses. Behav Neurosci 99: 541–555.

    Article  Google Scholar 

  • Heffner RS, Heffner HE (1986) Localization of tones by horses: Use of binaural cues and the role of the superior olivary complex. Behav Neurosci 100: 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HS (1987) Localization of noise, use of binaural cues, and a description of the superior olivary complex in the smallest carnivore, the least weasel (Mustela nivalis). Behav Neurosci 101: 701–708.

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Scheich H (1986) Effects of unilateral and bilateral cochlea removal on 2-deoxyglucose patterns in the chick auditory system. J Comp Neurol 252: 279–301.

    Article  PubMed  CAS  Google Scholar 

  • Helfert RH, Schwartz IR (1986) Morphological evidence for the existence of multiple neuronal classes in the cat lateral superior olivary nucleus. J Comp Neurol 244: 533–549.

    Article  PubMed  CAS  Google Scholar 

  • Helfert RH, Schwartz IR (1987) Morphologic evidence for the presence of five cell types in the gerbil lateral superior olivary nucleus. Am J Anat 179: 55–69.

    Article  PubMed  CAS  Google Scholar 

  • Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1989) GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res 6: 269–286.

    Article  Google Scholar 

  • Helfert RH, Schwartz IR, Ryan AF (1988) Ultrastructural characterization of gerbil olivocochlear neurons based on differential uptake of 3H-D-aspartic acid and a wheatgerm agglutinin-horseradish peroxidase conjugate from the cochlea. J Neurosci 8: 3111–3123.

    PubMed  CAS  Google Scholar 

  • Henkel CK (1983) Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 259: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Henkel CK (1989) Axonal domains within the dorsal nucleus of the lateral lemniscus. Soc Neurosci Absts 15: 746.

    Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1990) Dendritic morphology and development in the ferret medial superior olivary nucleus. J Comp Neurol 294: 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Irving R, Harrison JM (1967) The superior olivary complex and audition: A comparative study. J Comp Neurol 130: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Kane ES, Barone LM (1980) The dorsal nucleus of the lateral lemniscus in the cat: neuronal types and their distributions. J Comp Neurol 192: 797–826.

    Article  PubMed  CAS  Google Scholar 

  • Kane EC, Conlee JW (1979) Descending inputs to the caudal cochlear nucleus of the cat: degeneration and autoradiographic studies. J Comp Neurol 187: 759–784.

    Article  PubMed  CAS  Google Scholar 

  • Kane EC, Finn RC (1977) Descending and intrinsic inputs to the cat caudal cochlear nucleus: a horseradish peroxidase study. Neurosci 2: 897–912.

    Article  Google Scholar 

  • Kinney HC, Ottoson CK, White WF (1990) 3-dimensional distribution of H-3- Naloxone binding to opiate receptors in the human fetal and infant brainstem. J Comp Neurol 291: 55–78.

    Google Scholar 

  • Kiss A, Majorossy K (1983) Neuron morphology and synpatic architecture in the medial superior olivary nucleus. Light and electron microscope studies in the cat. Exp Brain Res 52: 315–327.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173: 417–431.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41: 870–884.

    PubMed  CAS  Google Scholar 

  • Kudo M (1981) Projections of the nuclei of the lateral lemniscus in the cat: an autoradiographic study. Brain Res 221: 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Kudo M, Nakamura Y, Moriizumi T, Tokuno H, Kitao Y (1988) Bilateral projections from the medial superior olivary nucleus to the inferior colliculus in the mole (Mogera robusta). Brain Res 463: 352–356.

    Article  PubMed  CAS  Google Scholar 

  • Kunzle H (1986) Projections from the cochlear nuclear complex to rhombence- phalic auditory centers and torus semicircularis in the turtle. Brain Res 379: 307–319.

    Article  PubMed  CAS  Google Scholar 

  • LaVilla I (1898) Algunos detalles concernientes a la oliva superior y focos acústicos. Revista Trimestral Micrografical 3: 75–83.

    Google Scholar 

  • Li RY-S, Guinan JJ (1971) Antidromic and orthodromic stimulation of neurons receiving calyces of Held. MIT Quart. Prog Rpt No 100 pp. 227–234.

    Google Scholar 

  • Lindsey BG (1975) Fine structure and distribution of axon terminals from the cochlear nucleus on neurons in the medial superior olivary nucleus of the cat. J Comp Neurol 160: 81–104.

    Article  PubMed  CAS  Google Scholar 

  • Masterton B, Thompson GC, Bechtold JK, RoBards MJ (1975) Neuroanatomical basis of binaural phase-difference analysis for sound localization: A comparative study. J Comp Physiol Psychol 89: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara JA (1990) Calbindin D-28K immunoreactivity in the cat’s superior colivary complex. Brain Res 508: 353–357.

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, Rasmussen GL (1971) Ultrastructural characteristics of synaptic endings in the cochlear nucleus having acetylcholinesterase activity. Brain Res 28: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Moller AR (1985) Physiology of the ascending auditory pathway with special reference to the auditory brainstem response (ABR). In: Pinheiro ML, Musiek FE (eds) Assessment of Central Auditory Dysfunction: Foundations and Clinical Correlations, Baltimore: Williams and Wilkins, pp. 23–41.

    Google Scholar 

  • Moore DR (1988) Auditory brainstem of the ferret: sources of projections to the inferior colliculus. J Comp Neurol 269: 342–354.

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Semple MN, Addison PD, Aitkin LM (1984) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. I. Responses to tones of low intensity. Hear Res 13: 159–174.

    Article  PubMed  CAS  Google Scholar 

  • Moore JK (1987a) The human auditory brain stem: A comparative view. Hear Res 29: 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Moore JK (1987b) The human auditory brain stem as a generator of auditory evoked potentials. Hear Res 29: 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia primat 16: 35–51.

    Article  CAS  Google Scholar 

  • Moore JK, Osen KK (1979) The human cochlear nuclei. Exp Brain Res Suppl 11: 36–44.

    Google Scholar 

  • Moore MJ, Caspary DM (1983) Strychnine blocks binaural inhibition in lateral superior olivary neurons. J Neurosci 3: 237–242.

    PubMed  CAS  Google Scholar 

  • Moore JK, Karapas F, Moore RY (1977) Projections of the inferior colliculus in insectivores and primates. Brain Behav Evol 14: 301–327.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1968a) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9: 288–311.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1968b) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entw Gesch 127: 201–220.

    Article  CAS  Google Scholar 

  • Morley BJ (1985) The localization and origin of somatostatin-containing fibers in an auditory brainstem nucleus. Peptides 6 (Suppl 1): 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz N (1965) Comparative aspects of the central auditory nuclei. Anat Rec 151: 467.

    Google Scholar 

  • Moskowitz N (1966) The cochlear nucleus and superior olivary complex in a lorisoid, Galago senegalensis. Anat Rec 154: 478.

    Google Scholar 

  • Moskowitz N (1969) Comparative aspects of some features of the central auditory system of primates. Annals NY Acad Sci 167: 357–369.

    Article  Google Scholar 

  • Nakajima Y (1971) Fine structure of the medial nucleus of the trapezoid body of the bat with special reference to two types of synaptic endings. J Cell Biol 50: 121–134.

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G, Bruns V, and Schuller G (1980) Ears adapted for the detection of motion, or how bats have exploited the capacities of the mammalian auditory system. J Acoust Soc Am 68: 741–753.

    Article  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending auditory projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus. J Comp Neurol 214: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Masterton RB (1986) Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J Comp Neurol 245: 553–565.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Shneiderman A (1989) An EM study of the dorsal nucleus of the lateral lemniscus: inhibitory, commissural, synaptic connections between ascending auditory pathways. J Neurosci 9: 967–982.

    PubMed  CAS  Google Scholar 

  • Oliver D, Schneiderman A, Henkel CK (1987) Morphological substrates for binaural interactions in the midbrain: the dorsal nucleus of the lateral lemniscus. ARO Absts 10: 218–219.

    Google Scholar 

  • Olio C, Schwartz IR (1979) The superior olivary complex in C57BL/6 mice. Am J Anat 155: 349–374.

    Article  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the Human Brain Stem. Philadelphia: Lippincott.

    Google Scholar 

  • Osen KK (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J Comp Neurol 144: 355–372.

    Article  PubMed  CAS  Google Scholar 

  • Osen K, Roth K (1969) Histochemical localization of cholinesterases in the cochlear nuclei of the cat, with notes on the origin of acetylcholinesterase-positive afferents and the superior olive. Brain Res 16: 165–185.

    Article  PubMed  CAS  Google Scholar 

  • Papez JW (1929a) Central acoustic tract in cat and man. Anat Ree 42: 60.

    Google Scholar 

  • Papez JW (1929b) Comparative Neurology. New York: Hafner Publishing Company. pp. 270–293.

    Google Scholar 

  • Papez JW (1930) Superior olivary nucleus. Arch Neurol Chicago 24: 1–20.

    Google Scholar 

  • Perkins RE (1973) An electron microscopic study of synaptic organization in the medial superior olive of normal and experimental chinchilla. J Comp Neurol 148: 387–416.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew AG (1981) Brainstem afferents to the torus semicircularis of the Queensland cane toad (Bufo marinus). J Comp Neurol 202 (l): 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Poon PWF, Sun X, Kamada T, Jen PH-S (1990) Frequency and space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Exp Brain Res 79: 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1899) The acoustic nerve: Its cochlear branch or cochlear nerve. In: Histologie du systeme Nerveux de l’Homme et des Vertebres. Vol. I, pp. 774–838. (English translation by Information Center for Hearing, Speech and Disorders of Human Communications, The Johns Hopkins Medical Institutions, PB 205–473, 1967.)

    Google Scholar 

  • Rasmussen GL (1964) Anatomical relationships of the ascending and descending auditory systems. In: Fields WS, Alford BR (eds) Neurological Aspects of Auditory and Vestibular Disorders, pp. 5–19. Springfield, IL: Thomas.

    Google Scholar 

  • Rasmussen GL (1967) Efferent connections of the cochlear nucleus. In Sensorineural Hearing Processes and Disorders, A.B. Graham ed, Little Brown, Boston, pp. 61–75.

    Google Scholar 

  • Richter EA, Norris BE, Fullerton BC, Levine RA, and Kiang NYS (1983) Is there a medial nucleus of the trapezoid body in humans. Am J Anat 68: 157–166.

    Article  Google Scholar 

  • Roberts RC, Ribak CE (1987) GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J Comp Neurol 258: 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Anderson CJ, Cole KS (1987) Segregation of efferent projections to different turns of the guinea pig cochlea. Hear Res 25: 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Ross LS, Pollak GD, Zook JM (1988) Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. J Comp Neurol 270: 488–505.

    Article  PubMed  CAS  Google Scholar 

  • Ross MD (1962) Auditory pathway of the epileptic waltzing mouse. I. A comparison of the acoustic pathway of the normal mouse with those of the totally deaf epileptic waltzer. J Comp Neurol 119: 317–339.

    Article  PubMed  CAS  Google Scholar 

  • Ross MD (1969) The general visceral efferent component of the eighth cranial nerve. J Comp Neurol 135: 453–477.

    Article  PubMed  CAS  Google Scholar 

  • Rubel E, Durham D (1985) Afferent influences on brain stem auditory nuclei of the chicken: changes in succinate dehydrogenase activity following cochlea removal. J Comp Neurol 231: 446–456.

    Article  PubMed  Google Scholar 

  • Rubinson K, Skiles MP (1975) Efferent projections of the superior olivary nucleus in the frog, Rana catesbiana. Brain Behav Evol 12: 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF, Schwartz IR (1986) Nipecotic acid: preferential accumulation in the cochlea by GABA uptake systems and selective retrograde transport to brainstem. Brain Res 399: 399–403.

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF, Schwartz IR, Keithley EM (1989) Collateral innervation of cochlear nucleus by lateral and medial olivocochlear neurons. ARO Absts 12: 345–346.

    Google Scholar 

  • Saint Marie RL, Ostapoff EM, Morest DK, Wenthold RJ (1989) Glycine-im- munoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J Comp Neurol 279: 382–396.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Goldstein NA, Ostad M, Hillman D (1990) Dendritic morphology of central auditory neurons correlates with their tonotopic position. J Comp Neurol 294: 443–454.

    Article  PubMed  CAS  Google Scholar 

  • Sanes DH, Merickel M, Rubel E (1989) Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. J Comp Neurol 279: 436–444.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1974) Neuropil organization in the superior olive of the cat. Exp Neurol 43: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler H-U, Henson Jr OW (1980) Performance of airborne animal sonar systems: I. Microchiroptera. In: Busnel RG, Fish JR (eds) Animal Sonar Systems. New York: Plenum Press, pp. 109–181.

    Google Scholar 

  • Schwartz IR (1972) Axonal endings in the cat medial superior olive: coated vesicles and intracellular substance. Brain Res 46: 187–202.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz IR (1977) Dendritic arrangements in the cat medial superior olivary nucleus. Neurosci 2: 81–101.

    Article  CAS  Google Scholar 

  • Schwartz IR (1978) Differential distribution of synaptic terminal classes in the cat medial superior olive. Anat Rec 190: 154.

    Google Scholar 

  • Schwartz IR (1980) The differential distribution of synaptic terminal classes on marginal and central cells in the cat medial superior olive. Am J Anat 159: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz IR (1982) Differential tritiated amino acid labeling of synaptic terminals in the cat medial superior olivary nucleus. ARO Absts 5: 21.

    Google Scholar 

  • Schwartz IR (1983) Autoradiographic evidence that glycine labeling of synaptic terminals in the superior olivary complex has transmitter-like properties. In: Webster WW, Aitkin LM (eds) Mechanisms of Hearing, Clayton, Australia: Monash Univ. Press, p. 147.

    Google Scholar 

  • Schwartz IR (1984a) Axonal organization in the cat medial superior olivary nucleus. Contributions to Sensory Physiology, WD Neff (editor), 8: 99–129.

    Google Scholar 

  • Schwartz IR (1984b) Autoradiographic studies of amino acid labeling of neural elements in the auditory system. Intl Conf On Auditory Biochemistry, Absts ARO Midwinter Mtg 7: 137.

    Google Scholar 

  • Schwartz IR (1985) Autoradiographic studies of amino acid labeling of neural elements in the auditory system. In: Drescher D (ed) Auditory Biochemistry, Springfield, IL: Charles Thomas, pp. 258–277.

    Google Scholar 

  • Schwartz IR, Eager PR (1992) Differential distribution of calcium binding proteins and neuronal surface markers and their relationship to GABA immunoreactive cells in the superior olivary complex and lateral lemniscal nuclei of the gerbil. Abstr. ARO Midwinter 15: 59.

    Google Scholar 

  • Schwartz IR, Helfert RH, Ryan AF (1986) Ultrastructural characterization of lateral olivocochlear efferent neurons and processes in the superior olivary complex and cochlear nucleus labeled by selective uptake of 3H-D-aspartic acid in the gerbil cochlea. Absts ARO Midwinter Mtg 9: 6–7.

    Google Scholar 

  • Schwartz IR, Yu S-M (1986) An anti-GABA antibody labels subpopulations of axonal terminals and neurons in the gerbil cochlear nucleus and superior olivary complex. Soc Neurosci Abs 12: 780.

    Google Scholar 

  • Schweizer H (1981) The connections of the inferior colliculus and the organization of the brainstem auditory system in the greater horseshoe bat (Rhinolophus ferrumequinum). J Comp Neurol 201: 25–49.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer LF, Lu SM, Dawburn D, Cant NB (1985) Calcitonin gene-related peptide in the superior olivary complex of cat and rat: a specific label for the lateral olivocochlear system. Neurosci Absts 11: 1051.

    Google Scholar 

  • Semple MN, Aitkin LM, Calford MB, Pettigrew JD, Phillips DP (1983) Spatial receptive fields in the cat inferior colliculus. Hear Res 10: 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Shneiderman A, Oliver DL, Henkel CK (1988) Connections of the dorsal nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending auditory system? J Comp Neurol 276: 188–208.

    Article  PubMed  CAS  Google Scholar 

  • Sidman RL, Angevine JB, Taber-Pierce E (1971) Atlas of the Mouse Brain and Spinal Cord. Cambridge: Harvard University Press.

    Google Scholar 

  • Smith DJ, Rubel EW (1979) Organization and development ofbrainstem auditory nuclei of the chicken: Dendritic gradients in N. Laminaris. J Comp Neurol 186: 213–240.

    Google Scholar 

  • Spangler KM, Cant NB, Henkel CK, Farley GR, Warr WB (1987) Descending projections from the superior olivary complex to the cochlear nucleus of the cat. J Comp Neurol 259: 452–465.

    Article  PubMed  CAS  Google Scholar 

  • Spangler KM, Morley BJ (1987) Somatostatin-like immunoreactivity in the midbrain of the cat. J Comp Neurol 260: 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Spangler KM, Morley BJ (1987) Somatostatin-like immunoreactivity in the midbrain of the cat. J Comp Neurol 260: 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Spangler KM, Warr WB, Henkel CK (1985) The projections of principal cells of the medial nucleus of the trapezoid body in the cat. J Comp Neurol 238: 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Stotler WA (1953) An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol 98: 401–432.

    Article  PubMed  CAS  Google Scholar 

  • Strominger NL (1973) The origin, course and distribution of the dorsal and intermediate acoustic stria in the monkey. J Comp Neurol 147: 209–234.

    Article  PubMed  CAS  Google Scholar 

  • Strominger NL (1978) The anatomical organization of the primate auditory pathway. In: Noback CR (ed) Sensory Systems of Primates, New York: Plenum, p. 53–91.

    Google Scholar 

  • Strominger NL, Hurwitz JL (1976) Anatomical aspects of the superior olivary complex. J Comp Neurol 170: 485–498.

    Article  PubMed  CAS  Google Scholar 

  • Strominger NL, Strominger AI (1971) Ascending brainstem projection of the anterior ventral cochlear nucleus in the monkey. J Comp Neurol 143: 217–241.

    Article  PubMed  CAS  Google Scholar 

  • Strominger NL, Nelson LR, Dougherty WJ (1977) Second order auditory pathways in the chimpanzee. J Comp Neurol 172: 349–366.

    Article  PubMed  CAS  Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116: 27–70.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Otani K, Tokunaga A, Sughita S (1985) The organization of neurons in the nucleus of the lateral lemniscus projecting to the superior and inferior colliculi in the rat. Brain Res 341: 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Thompson GC (1987) Projections from PVCN to SOC in guinea pig as demonstrated by the anterograde transport of Pha-L, ARO Abs 10: 215.

    Google Scholar 

  • Thompson GC, Cortez AM, Lam DMK (1985) Localization of GABA immu- noreactivity in the auditory brainstem of guinea pig. Brain Res 339: 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Tohyama Y, Senba E, Yamashita T, Kitajiri M, Kumazawa T, Ohata K, Tohyama M (1990) Coexistence of calcitonin gene-related peptide and enkephalin in single neurons of the lateral superior olivary nucleus of the guinea pig that project to the cochlea as lateral olivocochlear system. Brain Res 515: 312–314.

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga A (1988) Superior olivary and lateral lemniscal neurons projecting to the cochlea in the guinea pig. Neurosci Res 6: 20–30.

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK (1978) Patterns of synaptic organization in the cochlear nuclei of the cat. Neurosci Abs 4: 11.

    Google Scholar 

  • Tolbert LP, Morest DK, Yurgelun-Todd DK (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: horseradish peroxidase labelling of identified cell types. Neurosci 7: 3031–3052.

    Article  CAS  Google Scholar 

  • Tsuchitani C (1977) Functional organization of lateral cell groups of cat superior olivary complex. J Neurophys 40: 296–318.

    CAS  Google Scholar 

  • Tsuchitani C (1978) Lower auditory brain stem structures of the cat. In: Naunton RF, Fernandez C (eds) Evoked Electrical Activity in the Auditory Nervous System, New York: Academic Press, pp. 373–401.

    Google Scholar 

  • Tsuchitani C, Boudreau J (1967) Encoding of stimulus frequency and intensity by cat superior olive S-segment cells. J Acoust Soc Am 42: 794–805.

    Article  PubMed  CAS  Google Scholar 

  • van Noort J (1969) The Structure and Connections of the Inferior Colliculus. N.V., Netherlands: Van Gorcum and Co.

    Google Scholar 

  • Vater M, Feng AS (1990) Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats. J Comp Neurol 292: 373–395.

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14: 453–474.

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1969) Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exp Neurol 23: 140–155.

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1972) Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat. Brain Res 40: 247–270.

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: Their location, morphology, and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161: 159–182.

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: Neu- roanatomical evidence of functional specialization. Contrib Sens Physiol 7: 1–38.

    Google Scholar 

  • Warr WB, Spangler KM (1989) A novel projection of the ventral nucleus of the trapezoid body in the rat. Neurosci Abs 15: 745.

    Google Scholar 

  • Webster WR, Batini C, Buisseret-Delmas C, Compoint C, Guegan M, Thomasset M (1990) Colocalization of calbindin and GABA in medial nucleus of the trapezoid body of the rat. Neurosci Letts 111: 252–257.

    Article  CAS  Google Scholar 

  • Webster DB, Ackermann RF, Longa GC (1968) Central auditory system of the kangaroo rat, Dipodomys merriami. J Comp Neurol 133: 477–494.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold RJ, Huie D, Altschuler RA, Reeks KA (1987) Glycine immunoreac- tivity localized in the cochlear nucleus and the superior olivary complex. Neurosci 22: 897–912.

    Article  CAS  Google Scholar 

  • Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog, Rana catesbeiana. J Comp Neurol 198: 421–433.

    Article  PubMed  CAS  Google Scholar 

  • Wild JM (1987) Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon. Brain Res 408: 303–307.

    Article  PubMed  CAS  Google Scholar 

  • Willard FH, Martin GF (1984) The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neurosci 10: 1203–1232.

    Article  Google Scholar 

  • Winter IM, Robertson D, Cole KS (1989) Descending projections from auditory brainstem nuclei to the cochlea and cochlear nucleus of the guinea pig. J Comp Neurol 280: 143–57.

    Article  PubMed  CAS  Google Scholar 

  • Woollard HH, Harpman JA (1940) The connections of the inferior colliculus and of the dorsal nucleus of the lateral lemniscus. J Anat Lond 74: 441–457.

    CAS  Google Scholar 

  • Yin TCT, Chan JCK (1988) Neural mechanisms underlying interaural time sensitivity to tones and noise. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: The Neurobiologies Bases of Hearing, New York: John Wiley and Sons, pp. 385–430.

    Google Scholar 

  • Zhang SQ, Sun XD, Jen PH (1987) Anatomical study of neural projections to the superior colliculus of the big brown bat, Eptesicus fuscus. Brain Res 416: 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1979) Connections of the nuclei of the lateral lemniscus in the mustache bat, Pteronotus parnellii. Neurosci Abstr 5: 34.

    Google Scholar 

  • Zook JM, Casseday JH (1982a) Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol 207: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1982b) Origin of ascending projections to inferior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 207: 14–28.

    Article  PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1985) Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J Comp Neurol 237: 307–324.

    Google Scholar 

  • Zook JM, Casseday JH (1987) Convergence of ascending pathways at the inferior colliculus of the mustache bat, Pteronotus parnellii. J Comp Neurol 251: 347–361.

    Article  Google Scholar 

  • Zook JM, DiCaprio RA (1988) Intracellular labeling of afferents to the lateral superior olive in the bat, Eptesicus fuscus. Hear Res 34: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Zvorykin VP (1964) Morphological substrate of ultrasonic and locational capacities in the dolphin. Fed Proc Fed Am Soc Exp Biol 23: T647–T654.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Schwartz, I.R. (1992). The Superior Olivary Complex and Lateral Lemniscal Nuclei. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neuroanatomy. Springer Handbook of Auditory Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4416-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4416-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97800-0

  • Online ISBN: 978-1-4612-4416-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics