Skip to main content

Sphingolipids and Cardiovascular Diseases: Lipoprotein Metabolism, Atherosclerosis and Cardiomyopathy

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 721))

Abstract

Heart disease is widely believed to develop from two pathological processes. Circulating lipoproteins containing the nondegradable lipid, cholesterol, accumulate within the arterial wall and perhaps are oxidized to more toxic lipids. Both lipid accumulation and vascular reaction to the lipids lead to the gradual thickening of the vascular wall. A second major process that in some circumstances is a primary event is the development of a local inflammatory reaction. This might be a reaction to vessel wall injury that accompanies infections, immune disease, and perhaps diabetes and renal failure. In this chapter, we will focus on the relationship between de novo synthesis of sphingolipids and lipid metabolism, atherosclerosis, and cardiomyopathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shimabukuro M, Zhou YT, Levi M et al. Fatty acid induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA 1998; 95:2498–2502.

    PubMed  CAS  Google Scholar 

  2. Koyama K, Chen G, Lee Y et al. Tissue triglycerides, insulin resistance and insulin production: implications for hyper insulinemia of obesity. Am J Physiol 1997; 273:E708–E713.

    PubMed  CAS  Google Scholar 

  3. Zhou YT, Grayburn P, Karim A et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 2000; 97:1784–1789.

    PubMed  CAS  Google Scholar 

  4. Dyntar D, Eppenberger-Eberhardt M, Maedler K et al. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 2001; 50:2105–2113.

    PubMed  CAS  Google Scholar 

  5. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med 2006; 119:S10–S16.

    PubMed  Google Scholar 

  6. Jiang XC, Paultre F, Pearson TA et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler thromb Vasc Biol 2000; 20:2614–2618.

    PubMed  CAS  Google Scholar 

  7. Park TS, Panek RL, Mueller SB et al. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2004; 110:3465–3471.

    PubMed  CAS  Google Scholar 

  8. Hojjati MR, Li Z, Zhou H et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem 2005; 280:10284–10289.

    PubMed  CAS  Google Scholar 

  9. Liu J, Huan C, Chakraborty M et al. Macrophage sphingomyelin synthase 2 (SMS2) deficiency decreases atherosclerosis in mice. Circulation Research. 2009.

    Google Scholar 

  10. Park TS, Hu Y, Noh HL et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res 2008; 49:2101–2112.

    PubMed  CAS  Google Scholar 

  11. Holland WL, Brozinick JT, Wang LP et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-and obesityinduced insulin resistance. Cell Metab 2007; 5:167–179.

    PubMed  CAS  Google Scholar 

  12. Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta 1990; 1044:1–12.

    PubMed  CAS  Google Scholar 

  13. Weiss B, Stoffel W. Human and murine serine-palmitoyl-CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem 1997; 249:239–247.

    PubMed  CAS  Google Scholar 

  14. Hanada K, Hara T, Nishijima M et al. A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J Biol Chem 1997; 272:32108–32114.

    PubMed  CAS  Google Scholar 

  15. Yasuda S, Nishijima M, Hanada K. Localization, topology and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J Biol Chem 2003; 278:4176–4183.

    PubMed  CAS  Google Scholar 

  16. Hornemann T, Richard S, Rutti MF et al. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 2006; 281:37275–37281.

    PubMed  CAS  Google Scholar 

  17. Gable K, Slife H, Bacikova D et al. Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem 2000; 275:7597–7603.

    PubMed  CAS  Google Scholar 

  18. Han G, Gupta SD, Gable K et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci USA 2009; 106:8186–8191.

    PubMed  CAS  Google Scholar 

  19. Lipsky NG, Pagano RE. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol 1985; 100:27–34.

    PubMed  CAS  Google Scholar 

  20. Kobayashi T, Pagano RE. Lipid transport during mitosis. Alternative pathways for delivery of newly synthesized lipids to the cell surface. J Biol Chem 1989; 264:5966–5973.

    PubMed  CAS  Google Scholar 

  21. Futerman AH, Stieger B, Hubbard AL et al. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 1990; 265:8650–8657.

    PubMed  CAS  Google Scholar 

  22. Marggraf WD, Zertani R, Anderer FA et al. The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts. Biochim Biophys Acta 1982; 710:314–323.

    PubMed  CAS  Google Scholar 

  23. Malgat M, Maurice A, Baraud J. Sphingomyelin and ceramidephosphoethanolamine synthesis by microsomes and plasma membranes from rat liver and brain. J Lipid Res 1986; 27:251–260.

    PubMed  CAS  Google Scholar 

  24. van Helvoort A, van’t Hof W, Ritsema T et al. Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem 1994; 269:1763–1769.

    PubMed  Google Scholar 

  25. Allan D, Obradors MJ. Enzyme distributions in subcellular fractions of BHK cells infected with Semliki forest virus: evidence for a major fraction of sphingomyelin synthase in the trans-golgi network. Biochim Biophys Acta 1999; 1450:277–287.

    PubMed  CAS  Google Scholar 

  26. Albi E, Magni MV. Sphingomyelin synthase in rat liver nuclear membrane and chromatin. FEBS lett 1999; 460:369–372.

    PubMed  CAS  Google Scholar 

  27. Albi E, MM. Chromatin-associated sphingomyelin: metabolism in relation to cell function. Cell Biochem Funct 2003; 21:211–215.

    PubMed  CAS  Google Scholar 

  28. Huitema K, van den Dikkenberg J, Brouwers JF et al. Identification of a family of animal sphingomyelin synthases. Embo J 2004; 23:33–44.

    PubMed  CAS  Google Scholar 

  29. Yamaoka S, Miyaji M, Kitano T et al. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem 2004; 279:18688–18693.

    PubMed  CAS  Google Scholar 

  30. Yeang C, Varshney S, Wang R et al. The domain responsible for sphingomyelin synthase (SMS) activity. Biochim Biophys Acta 2008; 1781:610–617.

    PubMed  CAS  Google Scholar 

  31. Li Z, Hailemariam TK, Zhou H et al. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim Biophys Acta 2007; 1771:1186–1194.

    PubMed  CAS  Google Scholar 

  32. Miyaji M, Jin ZX, Yamaoka S et al. Role of membrane sphingomyelin and ceramide in platform formation for Fasmediated apoptosis. J Exp Med 2005; 202:249–259.

    PubMed  CAS  Google Scholar 

  33. Van der Luit AH, Budde M, Zerp S et al. Resistance to alkyl-lysophospholipid induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin-and cholesterol-deficiency in lipid rafts. Biochem J 2007; 401:541–549.

    PubMed  Google Scholar 

  34. Merkel M, Eckel RH Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake and regulation. J Lipid Res 2002; 43:1997–2006.

    PubMed  CAS  Google Scholar 

  35. Otarod JK, Goldberg IJ. Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr Atheroscler Rep 2004; 6:335–342.

    PubMed  Google Scholar 

  36. Kuksis A, Breckenridge WC, Myher JJ et al. Replacement of endogenous phospholipids in rat plasma lipoproteins during intravenous infusion of an artificial lipid emulsion. Can J Biochem 1978; 56:630–639.

    PubMed  CAS  Google Scholar 

  37. Saito H, Arimoto I, Tanaka M et al. Inhibition of lipoprotein lipase activity by sphingomyelin: role of membrane surface structure. Biochim Biophys Acta 2000; 1486:312–320.

    PubMed  CAS  Google Scholar 

  38. Arimoto I, Saito H, Kawashima Y et al. Effects of sphingomyelin and cholesterol on lipoprotein lipase-mediated lipolysis in lipid emulsions. J Lipid Res 1998; 39:143–151.

    PubMed  CAS  Google Scholar 

  39. Lobo LI, Wilton DC. Combined effects of sphingomyelin and cholesterol on the hydrolysis of emulsion particle triolein by lipoprotein lipase. Biochim Biophys Acta 1997; 1349:122–130.

    PubMed  CAS  Google Scholar 

  40. Cantin B, Brun LD, Gagne C et al. Alterations in erythrocyte membrane lipid composition and fluidity in primary lipoprotein lipase deficiency. Biochim Biophys Acta 1992; 1139:25–31.

    PubMed  CAS  Google Scholar 

  41. Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999; 40:1–16.

    PubMed  CAS  Google Scholar 

  42. Kothapalli D, Fuki I, Ali K et al. Antimitogenic effects of HDL and APOE mediated by Cox-2-dependent IP activation. J Clin Invest 2004; 113:609–618.

    PubMed  CAS  Google Scholar 

  43. Huang Y, Ji ZS, Brecht WJ et al. Overexpression of apolipoprotein E3 in transgenic rabbits causes combined hyperlipidemia by stimulating hepatic VLDL production and impairing VLDL lipolysis. Arterioscler Thromb Vasc Biol 1999; 19:2952–2959.

    PubMed  CAS  Google Scholar 

  44. Mensenkamp AR, Jong MC, van Goor H et al. Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem 1999; 274:35711–35718.

    PubMed  CAS  Google Scholar 

  45. Mahley RW, Huang Y, Weisgraber KH. Putting cholesterol in its place: apoE and reverse cholesterol transport. J Clin Invest 2006; 116:1226–1229.

    PubMed  CAS  Google Scholar 

  46. Arimoto I, Matsumoto C, Tanaka M et al. Surface composition regulates clearance from plasma and triolein lipolysis of lipid emulsions. Lipids 1998; 33:773–779.

    PubMed  CAS  Google Scholar 

  47. Morita SY, Nakano M, Sakurai A et al. Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Lett 2005; 579:1759–1764.

    PubMed  CAS  Google Scholar 

  48. Morita SY, Okuhira K, Tsuchimoto N et al. Effects of sphingomyelin on apolipoprotein E-and lipoprotein lipase-mediated cell uptake of lipid particles. Biochim Biophys Acta 2003; 1631:169–176.

    PubMed  CAS  Google Scholar 

  49. Lucic D, Huang ZH, Gu de S et al. Regulation of macrophage apoE secretion and sterol efflux by the LDL receptor. J Lipid Res 2007; 48:366–372.

    PubMed  CAS  Google Scholar 

  50. Schlitt A, Hojjati MR, von Gizycki H et al. Serum sphingomyelin levels are related to the clearance of postprandial remnant-like particles. J Lipid Res 2005; 46:196–200.

    PubMed  CAS  Google Scholar 

  51. Jeong T, Schissel SL, Tabas I et al. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J Clin Invest 1998; 101:905–912.

    PubMed  CAS  Google Scholar 

  52. Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor Sr-BI. Annu Rev Biochem 1999; 68:523–558.

    PubMed  CAS  Google Scholar 

  53. Van Eck M, Pennings M, Hoekstra M et al. Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis. Curr Opin Lipidol 2005; 16:307–315.

    PubMed  Google Scholar 

  54. Barter PJ, Brewer HB Jr, Chapman MJ et al. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler thromb Vasc Biol 2003; 23:160–167.

    PubMed  CAS  Google Scholar 

  55. Subbaiah PV, Liu M. Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithincholesterol acyltransferase reaction. J Biol Chem 1993; 268:20156–20163.

    PubMed  CAS  Google Scholar 

  56. Bolin DJ, Jonas A. Sphingomyelin inhibits the lecithin-cholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding. J Biol Chem 1996; 271:19152–19158.

    PubMed  CAS  Google Scholar 

  57. Rye KA, Hime NJ, Barter PJ. The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins. J Biol Chem 1996; 271:4243–4250.

    PubMed  CAS  Google Scholar 

  58. Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 2008; 263:256–273.

    PubMed  CAS  Google Scholar 

  59. Subbaiah PV, Gesquiere LR, Wang K. Regulation of the selective uptake of cholesteryl esters from high density lipoproteins by sphingomyelin. J Lipid Res 2005; 46:2699–2705.

    PubMed  CAS  Google Scholar 

  60. Marques-Vidal P, Jauhiainen M, Metso J et al. Transformation of high density lipoprotein 2 particles by hepatic lipase and phospholipid transfer protein. Atherosclerosis 1997; 133:87–95.

    PubMed  CAS  Google Scholar 

  61. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362:801–809.

    PubMed  CAS  Google Scholar 

  62. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991; 88:1785–1792.

    PubMed  CAS  Google Scholar 

  63. Yla-Herttuala S, Palinski W, Rosenfeld ME et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84:1086–1095.

    PubMed  CAS  Google Scholar 

  64. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995; 15:551–561.

    PubMed  CAS  Google Scholar 

  65. Williams KJ, Tabas I. The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 1998; 9:471–474.

    PubMed  CAS  Google Scholar 

  66. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007; 116:1832–1844.

    PubMed  CAS  Google Scholar 

  67. Nievelstein PF, Fogelman AM, Mottino G et al. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler Thromb 1991; 11:1795–1805.

    PubMed  CAS  Google Scholar 

  68. Smith EB. Intimal and medial lipids in human aortas. Lancet 1960; 1:799–803.

    PubMed  CAS  Google Scholar 

  69. Newman HA, Mc CE, Zilversmit DB. The synthesis of C14-lipids in rabbit atheromatous lesions. J Biol Chem 1961; 236:1264–1268.

    PubMed  CAS  Google Scholar 

  70. Phillips GB, Dodge JT. Composition of phospholipids and of phospholipid fatty acids of human plasma. J Lipid Res 1967; 8:676–681.

    PubMed  CAS  Google Scholar 

  71. Portman OW, Illingworth DR. Arterial metabolism in primates. Primates Med 1976; 9:145–223.

    PubMed  CAS  Google Scholar 

  72. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 1981; 50:733–764.

    PubMed  CAS  Google Scholar 

  73. Kummerow FA, Cook LS, Wasowicz E et al. Changes in the phospholipid composition of the arterial cell can result in severe atherosclerotic lesions. J Nutr Biochem 2001; 12:602–607.

    PubMed  CAS  Google Scholar 

  74. Hoff HF, Morton RE. Lipoproteins containing apo B extracted from human aortas. Structure and function. Ann N Y Acad Sci 1985; 454:183–194.

    PubMed  CAS  Google Scholar 

  75. Guyton JR, Klemp KF. Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol 1996; 16:4–11.

    PubMed  CAS  Google Scholar 

  76. Schissel SL, Tweedie-Hardman J, Rapp JH et al. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest 1996; 98:1455–1464.

    PubMed  CAS  Google Scholar 

  77. Schissel SL, Jiang X, Tweedie-Hardman J et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 1998; 273:2738–2746.

    PubMed  CAS  Google Scholar 

  78. Zilversmit DB, Mc CE, Jordan PH et al. The synthesis of phospholipids in human atheromatous lesions. Circulation 1961; 23:370–375.

    PubMed  CAS  Google Scholar 

  79. Eisenberg S, Stein Y, Stein O. Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age. J Clin Invest 1969; 48:2320–2329.

    PubMed  CAS  Google Scholar 

  80. Okwu AK, Xu XX, Shiratori Y et al. Regulation of the threshold for lipoprotein-induced acyl-CoAxholesterol O-acyltransferase stimulation in macrophages by cellular sphingomyelin content. J Lipid Res 1994; 35:644–655.

    PubMed  CAS  Google Scholar 

  81. Noel C, Marcel YL, Davignon J. Plasmaphospholipidsinthe different types ofprimary hyperlipoproteinemia. J Lab Clin Med 1972; 79:611–621.

    PubMed  CAS  Google Scholar 

  82. Rodriguez JL, Ghiselli GC, Torreggiani D et al. Very low density lipoproteins in normal and cholesterol-fed rabbits: lipid and protein composition and metabolism. Part 1. Chemical composition of very low density lipoproteins in rabbits. Atherosclerosis 1976; 23:73–83.

    PubMed  CAS  Google Scholar 

  83. Zhang SH, Reddick RL, Piedrahita JA et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992; 258:468–471.

    PubMed  CAS  Google Scholar 

  84. Plump AS, Smith JD, Hayek T et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992; 71:343–353.

    PubMed  CAS  Google Scholar 

  85. Schlitt A, Blankenberg S, Yan D et al. Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutr Metab (Lond) 2006; 3:5.

    Google Scholar 

  86. Li Z, Basterr MJ, Hailemariam TK et al. The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis. Biochim Biophys Acta 2005; 1735:130–134.

    PubMed  CAS  Google Scholar 

  87. Devlin CM, Leventhal AR, Kuriakose G et al. Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol 2008; 28:1723–1730.

    PubMed  CAS  Google Scholar 

  88. Leventhal AR, Chen W, Tall AR et al. Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux. J Biol Chem 2001; 276:44976–44983.

    PubMed  CAS  Google Scholar 

  89. Schuchman EH, Desnick RJ. The Metabolic and Molecular Basis of Inherited Disease (Scriver CR, Beaudet AL, Sly WS and Valle D eds), McGraw-Hill, New York 1995; 2601–2624.

    Google Scholar 

  90. Slotte JP. Sphingomyelin-cholesterol interactions in biological and model membranes. Chem Phys Lipids 1999; 102:13–27.

    PubMed  CAS  Google Scholar 

  91. Ridgway ND. Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim Biophys Acta 2000; 1484:129–141.

    PubMed  CAS  Google Scholar 

  92. Viana MB, Giugliani R, Leite VH et al. Very low levels of high density lipoprotein cholesterol in four sibs of a family with nonneuropathic Niemann-Pick disease and seablue histiocytosis. J Med Genet 1990; 27:499–504.

    PubMed  CAS  Google Scholar 

  93. Tall AR, Wang N. Tangier disease as a test of the reverse cholesterol transport hypothesis. J Clin Invest 2000; 106:1205–1207.

    PubMed  CAS  Google Scholar 

  94. Jessup W, Gelissen IC, Gaus K et al. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages. Curr Opin Lipidol 2006; 17:247–257.

    PubMed  CAS  Google Scholar 

  95. Gaus K, Kritharides L, Schmitz G et al. Apolipoprotein A-1 interaction with plasma membrane lipid rafts controls cholesterol export from macrophages. FASEB J 2004; 18:574–576.

    PubMed  CAS  Google Scholar 

  96. Mendez AJ, Lin G, Wade DP et al. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem 2001;276:3158–3166.

    PubMed  CAS  Google Scholar 

  97. Landry YD, Denis M, Nandi S et al. ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J Biol Chem 2006; 281:36091–36101.

    PubMed  CAS  Google Scholar 

  98. Gelissen IC, Harris M, Rye KA et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoa-I. Arterioscler Thromb Vasc Biol 2006; 26:534–540.

    PubMed  CAS  Google Scholar 

  99. Wang N, Ranalletta M, Matsuura F et al. LXR induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler Thromb Vasc Biol 2006;26:1310–1316.

    PubMed  CAS  Google Scholar 

  100. Huang ZH, Gu D, Lange Y et al. Expression of scavenger receptor BI facilitates sterol movement between the plasma membrane and the endoplasmic reticulum in macrophages. Biochemistry 2003; 42:3949–3955.

    PubMed  CAS  Google Scholar 

  101. Zhang W, Yancey PG, Su YR et al. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein Edeficient mice. Circulation 2003; 108:2258–2263.

    PubMed  CAS  Google Scholar 

  102. Timmins JM, Lee JY, Boudyguina E et al. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 2005; 115:1333–1342.

    PubMed  CAS  Google Scholar 

  103. Lee JY, Parks JS. ATP-binding cassette transporter AI and its role in HDL formation. Curr Opin Lipidol 2005; 16:19–25.

    PubMed  Google Scholar 

  104. Landschulz KT, Pathak RK, Rigotti A et al. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest 1996; 98:984–995.

    PubMed  CAS  Google Scholar 

  105. Stangl H, Hyatt M, Hobbs HH. Transport of lipids from high and low density lipoproteins via scavenger receptor-BI. J Biol Chem 1999; 274:32692–32698.

    PubMed  CAS  Google Scholar 

  106. Kennedy MA, Barrera GC, Nakamura K et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 2005; 1:121–131.

    PubMed  CAS  Google Scholar 

  107. Christiansen K, Carlsen J. Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim Biophys Acta 1981; 647:188–195.

    PubMed  CAS  Google Scholar 

  108. Danielsen EM, Hansen GH. Lipid raft organization and function in the small intestinal brush border. J Physiol Biochem 2008; 64:377–382.

    PubMed  CAS  Google Scholar 

  109. Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68:533–544.

    PubMed  CAS  Google Scholar 

  110. Field FJ, Born E, Murthy S et al. Caveolin is present in intestinal cells: role in cholesterol trafficking? J Lipid Res 1998; 39:1938–1950.

    PubMed  CAS  Google Scholar 

  111. Garmy N, Taieb N, Yahi N et al. Interaction of cholesterol with sphingosine: physicochemical characterization and impact on intestinal absorption. J Lipid Res 2005; 46:36–45.

    PubMed  CAS  Google Scholar 

  112. Graf GA, Connell PM, van der Westhuyzen DR et al. The class B, type I scavenger receptor promotes the selective uptake of high density lipoprotein cholesterol ethers into caveolae. J Biol Chem 1999; 274:12043–12048.

    PubMed  CAS  Google Scholar 

  113. Babitt J, Trigatti B, Rigotti A et al.Murine Sr-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem 1997; 272:13242–13249.

    PubMed  CAS  Google Scholar 

  114. Drobnik W, Borsukova H, Bottcher A et al. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains. Traffic 2002; 3:268–278.

    PubMed  Google Scholar 

  115. Nagao K, Takahashi K, Hanada K et al. Enhanced apoA-I-dependent cholesterol efflux by ABCA1 from sphingomyelin-deficient Chinese hamster ovary cells. J Biol Chem 2007; 282:14868–14874.

    PubMed  CAS  Google Scholar 

  116. Zweerink MM, Edison AM, Wells GB et al. Characterization of a novel, potent and specific inhibitor of serine palmitoyltransferase. J Biol Chem 1992; 267:25032–25038.

    PubMed  CAS  Google Scholar 

  117. Mandala SM, Frommer BR, Thornton RA et al. Inhibition of serine palmitoyl-transferase activity by lipoxamycin. J Antibiot (Tokyo) 1994; 47:376–379.

    CAS  Google Scholar 

  118. Miyake Y, Kozutsumi Y, Nakamura S et al. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 1995;211:396–403.

    PubMed  CAS  Google Scholar 

  119. Kobayashi SFT, Hayashi T, Nishijima M et al. Catalytic asymmetric syntheses of antifungal sphingofungins and their biological activity as potent inhibitors of serine palmitoyltransferase (SPT). J Am Chem Soc 1998; 120:908–919.

    CAS  Google Scholar 

  120. Chen JK, Lane WS, Schreiber SL. The identification of myriocin-binding proteins. Chem Biol 1999; 6:221–235.

    PubMed  CAS  Google Scholar 

  121. Park TS, Rosebury W, Kindt EK et al. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res 2008; 58:45–51.

    PubMed  CAS  Google Scholar 

  122. Li ZPT, Li Y, Pan X et al. Serine Palmitoyltransferase (SPT) Deficient Mice Absorb Less Cholesterol Biochim Biophys Acta in press. 2009.

    Google Scholar 

  123. Hojjati MR, Li Z, Jiang XC. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta 2005; 1737:44–51.

    PubMed  CAS  Google Scholar 

  124. Memon RA, Holleran WM, Moser AH et al. Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler Thromb Vasc Biol 1998; 18:1257–1265.

    PubMed  CAS  Google Scholar 

  125. Memon RA, Holleran WM, Uchida Y et al. Regulation of sphingolipid and glycosphingolipid metabolism in extrahepatic tissues by endotoxin. J Lipid Res 2001; 42:452–459.

    PubMed  CAS  Google Scholar 

  126. Farrell AM, Uchida Y, Nagiec MM et al. UVB irradiation up-regulates serine palmitoyltransferase in cultured human keratinocytes. J Lipid Res 1998; 39:2031–2038.

    PubMed  CAS  Google Scholar 

  127. Shimabukuro M, Higa M, Zhou YT et al. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem 1998; 273:32487–32490.

    PubMed  CAS  Google Scholar 

  128. Dickson RC, Lester RL, Nagiec MM. Serine palmitoyltransferase. Methods Enzymol 2000; 311:3–9.

    PubMed  CAS  Google Scholar 

  129. Longo CA, Tyler D, Mallampalli RK. Sphingomyelin metabolism is developmentally regulated in rat lung. Am J Respir Cell Mol Biol 1997; 16:605–612.

    PubMed  CAS  Google Scholar 

  130. Geelen MJ, Beynen AC. Consumption of olive oil has opposite effects on plasma total cholesterol and sphingomyelin concentrations in rats. Br J Nutr 2000; 83:541–547

    PubMed  CAS  Google Scholar 

  131. Rotta LN, Da Silva CG, Perry ML et al. Undernutrition decreases serine palmitoyltransferase activity in developing rat hypothalamus. Ann Nutr Metab 1999; 43:152–158.

    PubMed  CAS  Google Scholar 

  132. Merrill AH Jr. Characterization of serine palmitoyltransferase activity in Chinese hamster overy cells. Biochim Biophys Acta 1983; 754:284–291.

    PubMed  CAS  Google Scholar 

  133. Hanada K, Hara T, Nishijima M. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J Biol Chem 2000; 275:8409–8415.

    PubMed  CAS  Google Scholar 

  134. Liu J, Zhang H, Li Z et al. Sphingomyelin Synthase 2 Is One of the Determinants for Plasma and Liver Sphingomyelin levels in Mice. Arterioscler Thromb Vasc Biol. 2009.

    Google Scholar 

  135. Geng YJ, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol 2002; 22:1370–1380.

    PubMed  CAS  Google Scholar 

  136. Separovic D, Hanada K, Maitah MY et al. Sphingomyelin synthase 1 suppresses ceramide production and apoptosis postphotodamage. Biochem Biophys Res Commun 2007; 358:196–202.

    PubMed  CAS  Google Scholar 

  137. Ding T, Li Z, Hailemariam T et al. SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism and cell apoptosis. J Lipid Res 2008; 49:376–385.

    PubMed  CAS  Google Scholar 

  138. Ko YG, Lee JS, Kang YS et al. TNF-alphamediated apoptosis is initiated in caveolae-like domains. J Immunol 1999; 162:7217–7223.

    PubMed  CAS  Google Scholar 

  139. Triantafilou M, Miyake K, Golenbock DT et al. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 2002; 115:2603–2611.

    PubMed  CAS  Google Scholar 

  140. Cerbon J, del Carmen Lopez-Sanchez R. Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells. Biochem J 2003; 373:917–924.

    PubMed  CAS  Google Scholar 

  141. Wakelam MJ. Diacylglycerol—when is it an intracellular messenger? Biochim Biophys Acta 1998; 1436:117–126.

    PubMed  CAS  Google Scholar 

  142. Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 2007; 7:281–294.

    PubMed  CAS  Google Scholar 

  143. Mayor S, Maxfield FR. Insolubility and redistribution of GPIanchored proteins at the cell surface after detergent treatment. Mol Biol cell 1995; 6:929–944.

    PubMed  CAS  Google Scholar 

  144. Murriel CL, Mochly-Rosen D. Opposing roles of delta and epsilonPKC in cardiac ischemia andreperfusion: targeting the apoptotic machinery. Arch Biochem Biophys 2003; 420:246–254.

    PubMed  CAS  Google Scholar 

  145. Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol 2000; 10:73–80.

    PubMed  CAS  Google Scholar 

  146. Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 2002; 110:3–8.

    PubMed  CAS  Google Scholar 

  147. Libby P. Inflammation in atherosclerosis. Nature 2002; 420:868–874.

    PubMed  CAS  Google Scholar 

  148. Mayo MW, Baldwin AS. The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 2000; 1470:M55–M62.

    PubMed  CAS  Google Scholar 

  149. Branen L, Hovgaard L, Nitulescu M et al. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004; 24:2137–2142.

    PubMed  CAS  Google Scholar 

  150. Whitman SC, Ravisankar P, Daugherty A. IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E−/− mice. J Interferon Cytokine Res 2002; 22:661–670.

    PubMed  CAS  Google Scholar 

  151. Legler DF, Micheau O, Doucey MA et al. Recruitment of TNF receptor 1 to lipid rafts is essential for TNF alpha mediated NF-kappaB activation. Immunity 2003; 18:655–664.

    PubMed  CAS  Google Scholar 

  152. Hunter I, Nixon GF. Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J Biol Chem 2006; 281:34705–34715.

    PubMed  CAS  Google Scholar 

  153. Higuchi M, Singh S, Jaffrezou JP et al. Acidic sphingomyelinase-generated ceramide is needed but not sufficient for TNF induced apoptosis and nuclear factor-kappa B activation. J Immunol 1996; 157:297–304.

    PubMed  CAS  Google Scholar 

  154. Gamard CJ, Dbaibo GS, Liu B et al. Selective involvement of ceramide in cytokine-induced apoptosis. Ceramide inhibits phorbol ester activation of nuclear factor kappaB. J Biol Chem 1997; 272:16474–16481.

    PubMed  CAS  Google Scholar 

  155. Luberto C, Yoo DS, Suidan HS et al. Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40-transformed human fibroblasts. J Biol Chem 2000; 275:14760–14766.

    PubMed  CAS  Google Scholar 

  156. Hailemariam TK, Huan C, Liu J et al. Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler Thromb Vasc Biol 2008; 28:1519–1526.

    PubMed  CAS  Google Scholar 

  157. Stone PH, Muller JE, Hartwell T et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution ofboth coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS Study Group. J Am Coll Cardiol 1989; 14:49–57.

    PubMed  CAS  Google Scholar 

  158. Grynberg A, Demaison L. Fatty acid oxidation in the heart. J Cardiovasc Pharmacol 1996;28Suppl 1:S11–S17.

    PubMed  CAS  Google Scholar 

  159. Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 2000; 95:75–83.

    PubMed  CAS  Google Scholar 

  160. Augustus AS, Kako Y, Yagyu H et al. Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab 2003; 284:E331–E339.

    PubMed  CAS  Google Scholar 

  161. Jacob S. Lipid droplet accumulation in the heart during fasting. Acta Histochem 1987; 82:149–152.

    PubMed  CAS  Google Scholar 

  162. Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 1997; 34:25–33.

    PubMed  CAS  Google Scholar 

  163. Young ME, Guthrie PH, Razeghi P et al. Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 2002; 51:2587–2595.

    PubMed  CAS  Google Scholar 

  164. Finck BN, Han X, Courtois M et al.. A critical role for PPAR alpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulationby dietary fat content. Proc Natl Acad Sci USA 2003; 100:1226–1231.

    PubMed  CAS  Google Scholar 

  165. Yokoyama M, Yagyu H, Hu Y et al. Apolipoprotein B production reduces lipotoxic cardiomyopathy: studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem 2004; 279:4204–4211.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiang, XC., Goldberg, I.J., Park, TS. (2011). Sphingolipids and Cardiovascular Diseases: Lipoprotein Metabolism, Atherosclerosis and Cardiomyopathy. In: Cowart, L.A. (eds) Sphingolipids and Metabolic Disease. Advances in Experimental Medicine and Biology, vol 721. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0650-1_2

Download citation

Publish with us

Policies and ethics