Skip to main content

Building the Machines: Scaffolding Protein Functions During Bacteriophage Morphogenesis

  • Chapter
  • First Online:
Viral Molecular Machines

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

For a machine to function, it must first be assembled. The morphogenesis of the simplest icosahedral virus would require only 60 copies of a single capsid protein to coalesce. If the capsid protein’s structure could be entirely dedicated to this endeavor, the morphogenetic mechanism would be relatively uncomplicated. However, capsid proteins have had to evolve other functions, such as receptor recognition, immune system evasion, and the incorporation of other structure proteins, which can detract from efficient assembly. Moreover, evolution has mandated that viruses obtain additional proteins that allow them to adapt to their hosts or to more effectively compete in their respective niches. Consequently, genomes have increased in size, which has required capsids to do likewise. This, in turn, has lead to more complex icosahedral geometries. These challenges have driven the evolution of scaffolding proteins, which mediate, catalyze, and promote proper virus assembly. The mechanisms by which these proteins perform their functions are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker ML, Jiang W, Rixon FJ, Chiu W (2005) Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol 79:14967–14970

    PubMed  CAS  Google Scholar 

  • Baldwin C, Berkhout B (2007) HIV-1 drug-resistance and drug-dependence. Retrovirology 4:78

    PubMed  Google Scholar 

  • Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    PubMed  CAS  Google Scholar 

  • Berger B, Shor PW, Tucker-Kellogg L, King J (1994) Local rule-based theory of virus shell assembly. Proc Natl Acad Sci USA 91:7732–7736

    PubMed  CAS  Google Scholar 

  • Bernal RA, Hafenstein S, Olson NH, Bowman VD, Chipman PR, Baker TS, Fane BA, Rossmann MG (2003) Structural studies of bacteriophage alpha3 assembly. J Mol Biol 325:11–24

    PubMed  CAS  Google Scholar 

  • Bjornsti MA, Reilly BE, Anderson DL (1983) Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: oriented and quantized in vitro packaging of DNA protein gp3. J Virol 45:383–396

    PubMed  CAS  Google Scholar 

  • Brentlinger KL, Hafenstein S, Novak CR, Fane BA, Borgon R, McKenna R, Agbandje-McKenna M (2002) Microviridae, a family divided: isolation, characterization, and genome sequence of phiMH2K, a bacteriophage of the obligate intracellular parasitic bacterium Bdellovibrio bacteriovorus. J Bacteriol 184:1089–1094

    PubMed  CAS  Google Scholar 

  • Burch AD, Fane BA (2000a) Foreign and chimeric external scaffolding proteins as inhibitors of Microviridae morphogenesis. J Virol 74:9347–9352

    PubMed  CAS  Google Scholar 

  • Burch AD, Fane BA (2000b) Efficient complementation by chimeric Microviridae internal scaffolding proteins is a function of the COOH-terminus of the encoded protein. Virology 270:286–290

    PubMed  CAS  Google Scholar 

  • Burch AD, Fane BA (2003) Genetic analyses of putative conformation switching and cross-species inhibitory domains in Microviridae external scaffolding proteins. Virology 310:64–71

    PubMed  CAS  Google Scholar 

  • Burch AD, Ta J, Fane BA (1999) Cross-functional analysis of the Microviridae internal scaffolding protein. J Mol Biol 286:95–104

    PubMed  CAS  Google Scholar 

  • Casjens S, King J (1974) P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. J Supramol Struct 2:202–224

    PubMed  CAS  Google Scholar 

  • Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24

    PubMed  CAS  Google Scholar 

  • Chang JR, Spilman MS, Rodenburg CM, Dokland T (2009) Functional domains of the bacteriophage P2 scaffolding protein: identification of residues involved in assembly and protease activity. Virology 384:144–150

    PubMed  CAS  Google Scholar 

  • Chen R, Neill JD, Estes MK, Prasad BV (2006) X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci USA 103:8048–8053

    PubMed  CAS  Google Scholar 

  • Chen M, Uchiyama A, Fane BA (2007) Eliminating the requirement of an essential gene product in an already very small virus: scaffolding protein B-free oX174, B-free. J Mol Biol 373:308–314

    PubMed  CAS  Google Scholar 

  • Cherwa JE Jr, Fane BA (2009) Complete virion assembly with scaffolding proteins altered in the ability to perform a critical conformational switch. J Virol 83:7391–7396

    PubMed  CAS  Google Scholar 

  • Cherwa JE Jr, Uchiyama A, Fane BA (2008) Scaffolding proteins altered in the ability to perform a conformational switch confer dominant lethal assembly defects. J Virol 82:5774–5780

    PubMed  CAS  Google Scholar 

  • Cherwa JE Jr, Sanchez-Soria P, Wichman HA, Fane BA (2009) Viral adaptation to an antiviral protein enhances the fitness level to above that of the uninhibited wild type. J Virol 83:11746–11750

    PubMed  CAS  Google Scholar 

  • Christie GE, Calendar R (1990) Interactions between satellite bacteriophage P4 and its helpers. Annu Rev Genet 24:465–490

    PubMed  CAS  Google Scholar 

  • Clarke IN, Cutcliffe LT, Everson JS, Garner SA, Lambden PR, Pead PJ, Pickett MA, Brentlinger KL, Fane BA (2004) Chlamydiaphage Chp2, a skeleton in the phiX174 closet: scaffolding protein and procapsid identification. J Bacteriol 186:7571–7574

    PubMed  CAS  Google Scholar 

  • Collins JA, Thompson MG, Paintsil E, Ricketts M, Gedzior J, Alexander L (2004) Competitive fitness of nevirapine-resistant human immunodeficiency virus type 1 mutants. J Virol 78:603–611

    PubMed  CAS  Google Scholar 

  • Conway JF, Wikoff WR, Cheng N, Duda RL, Hendrix RW, Johnson JE, Steven AC (2001) Virus maturation involving large subunit rotations and local refolding. Science 292:744–748

    PubMed  CAS  Google Scholar 

  • Conway JF, Cheng N, Ross PD, Hendrix RW, Duda RL, Steven AC (2007) A thermally induced phase transition in a viral capsid transforms the hexamers, leaving the pentamers unchanged. J Struct Biol 158:224–232

    PubMed  CAS  Google Scholar 

  • Desai P, Watkins SC, Person S (1994) The size and symmetry of B capsids of herpes simplex virus type 1 are determined by the gene products of the UL26 open reading frame. J Virol 68:5365–5374

    PubMed  CAS  Google Scholar 

  • Dokland T, McKenna R, Ilag LL, Bowman BR, Incardona NL, Fane BA, Rossmann MG (1997) Structure of a viral procapsid with molecular scaffolding. Nature 389:308–313

    PubMed  CAS  Google Scholar 

  • Dokland T, Bernal RA, Burch A, Pletnev S, Fane BA, Rossmann MG (1999) The role of scaffolding proteins in the assembly of the small, single-stranded DNA virus phiX174. J Mol Biol 288:595–608

    PubMed  CAS  Google Scholar 

  • Dokland T, Wang S, Lindqvist BH (2002) The structure of P4 procapsids produced by coexpression of capsid and external scaffolding proteins. Virology 298:224–231

    PubMed  CAS  Google Scholar 

  • Earnshaw W, King J (1978) Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. J Mol Biol 126:721–747

    PubMed  CAS  Google Scholar 

  • Earnshaw W, Casjens S, Harrison SC (1976) Assembly of the head of bacteriophage P22: x-ray diffraction from heads, proheads and related structures. J Mol Biol 104:387–410

    PubMed  CAS  Google Scholar 

  • Effantin G, Boulanger P, Neumann E, Letellier L, Conway JF (2006) Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J Mol Biol 361:993–1002

    PubMed  CAS  Google Scholar 

  • Fane BA, Hayashi M (1991) Second-site suppressors of a cold-sensitive prohead accessory protein of bacteriophage phi X174. Genetics 128:663–671

    PubMed  CAS  Google Scholar 

  • Fane BA, Shien S, Hayashi M (1993) Second-site suppressors of a cold-sensitive external scaffolding protein of bacteriophage phi X174. Genetics 134:1003–1011

    PubMed  CAS  Google Scholar 

  • Fu CY, Prevelige PE Jr (2006) Dynamic motions of free and bound O29 scaffolding protein identified by hydrogen deuterium exchange mass spectrometry. Protein Sci 15:731–743

    PubMed  CAS  Google Scholar 

  • Fu CY, Prevelige PE Jr (2009) In vitro incorporation of the phage Phi29 connector complex. Virology 394:149–153

    PubMed  CAS  Google Scholar 

  • Fu CY, Morais MC, Battisti AJ, Rossmann MG, Prevelige PE Jr (2007) Molecular dissection of o29 scaffolding protein function in an in vitro assembly system. J Mol Biol 366:1161–1173

    PubMed  CAS  Google Scholar 

  • Fu CY, Uetrecht C, Kang S, Morais MC, Heck AJ, Walter MR, Prevelige PE Jr (2010) A docking model based on mass spectrometric and biochemical data describes phage packaging motor incorporation. Mol Cell Proteomics 9:1764–1773

    PubMed  CAS  Google Scholar 

  • Fuller MT, King J (1980) Regulation of coat protein polymerization by the scaffolding protein of bacteriophage P22. Biophys J 32:381–401

    PubMed  CAS  Google Scholar 

  • Godson GN, Barrell BG, Staden R, Fiddes JC (1978) Nucleotide sequence of bacteriophage G4 DNA. Nature 276:236–247

    PubMed  CAS  Google Scholar 

  • Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, Zientara S, Mertens PP, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395:470–478

    PubMed  CAS  Google Scholar 

  • Guo PX, Erickson S, Anderson D (1987) A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science 236:690–694

    PubMed  CAS  Google Scholar 

  • Haanes EJ, Thomsen DR, Martin S, Homa FL, Lowery DE (1995) The bovine herpesvirus 1 maturational proteinase and scaffold proteins can substitute for the homologous herpes simplex virus type 1 proteins in the formation of hybrid type B capsids. J Virol 69:7375–7379

    PubMed  CAS  Google Scholar 

  • Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511

    PubMed  CAS  Google Scholar 

  • Hendrix RW, Duda RL (1998) Bacteriophage HK97 head assembly: a protein ballet. Adv Virus Res 50:235–288

    PubMed  CAS  Google Scholar 

  • Hernando E, Llamas-Saiz AL, Foces-Foces C, McKenna R, Portman I, Agbandje-McKenna M, Almendral JM (2000) Biochemical and physical characterization of parvovirus minute virus of mice virus-like particles. Virology 267:299–309

    PubMed  CAS  Google Scholar 

  • Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    PubMed  CAS  Google Scholar 

  • Hohn B (1983) DNA sequences necessary for packaging of bacteriophage lambda DNA. Proc Natl Acad Sci USA 80:7456–7460

    PubMed  CAS  Google Scholar 

  • Huet A, Conway JF, Letellier L, Boulanger P (2010) In vitro assembly of the T  =  13 procapsid of bacteriophage T5 with its scaffolding domain. J Virol 84:9350–9358

    PubMed  CAS  Google Scholar 

  • Ilag LL, Olson NH, Dokland T, Music CL, Cheng RH, Bowen Z, McKenna R, Rossmann MG, Baker TS, Incardona NL (1995) DNA packaging intermediates of bacteriophage phi X174. Structure 3:353–363

    PubMed  CAS  Google Scholar 

  • Jardine PJ, McCormick MC, Lutze-Wallace C, Coombs DH (1998) The bacteriophage T4 DNA packaging apparatus targets the unexpanded prohead. J Mol Biol 284:647–659

    PubMed  CAS  Google Scholar 

  • Jiang W, Li Z, Zhang Z, Baker ML, Prevelige PE Jr, Chiu W (2003) Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat Struct Biol 10:131–135

    PubMed  CAS  Google Scholar 

  • Kang S, Prevelige PE Jr (2005) Domain study of bacteriophage p22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange. J Mol Biol 347:935–948

    PubMed  CAS  Google Scholar 

  • Kang S, Poliakov A, Sexton J, Renfrow MB, Prevelige PE Jr (2008) Probing conserved helical modules of portal complexes by mass spectrometry-based hydrogen/deuterium exchange. J Mol Biol 381:772–784

    PubMed  CAS  Google Scholar 

  • Katsura I, Kobayashi H (1990) Structure and inherent properties of the bacteriophage lambda head shell. VII. Molecular design of the form-determining major capsid protein. J Mol Biol 213:503–511

    PubMed  CAS  Google Scholar 

  • Kellenberger E (1990) Form determination of the heads of bacteriophages. Eur J Biochem 190:233–248

    PubMed  CAS  Google Scholar 

  • Kim KJ, Sunshine MG, Lindqvist BH, Six EW (2001) Capsid size determination in the P2-P4 bacteriophage system: suppression of sir mutations in P2’s capsid gene N by supersid mutations in P4’s external scaffold gene sid. Virology 283:49–58

    PubMed  CAS  Google Scholar 

  • King J, Casjens S (1974) Catalytic head assembling protein in virus morphogenesis. Nature 251:112–119

    PubMed  CAS  Google Scholar 

  • King J, Lenk EV, Botstein D (1973) Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J Mol Biol 80:697–731

    PubMed  CAS  Google Scholar 

  • Kodaira K, Nakano K, Okada S, Taketo A (1992) Nucleotide sequence of the genome of the bacteriophage alpha 3: interrelationship of the genome structure and the gene products with those of the phages, phi X174, G4 and phi K. Biochim Biophys Acta 1130:277–288

    PubMed  CAS  Google Scholar 

  • Lander GC, Khayat R, Li R, Prevelige PE, Potter CS, Carragher B, Johnson JE (2009) The p22 tail machine at subnanometer resolution reveals the architecture of an infection conduit. Structure 17:789–799

    PubMed  CAS  Google Scholar 

  • Lebedev AA, Krause MH, Isidro AL, Vagin AA, Orlova EV, Turner J, Dodson EJ, Tavares P, Antson AA (2007) Structural framework for DNA translocation via the viral portal protein. EMBO J 26:1984–1994

    PubMed  CAS  Google Scholar 

  • Lengyel JA, Goldstein RN, Marsh M, Sunshine MG, Calendar R (1973) Bacteriophage P2 head morphogenesis: cleavage of the major capsid protein. Virology 53:1–23

    PubMed  CAS  Google Scholar 

  • Lenk E, Casjens S, Weeks J, King J (1975) Intracellular visualization of precursor capsids in phage P22 mutant infected cells. Virology 68:182–199

    PubMed  CAS  Google Scholar 

  • Liu BL, Everson JS, Fane B, Giannikopoulou P, Vretou E, Lambden PR, Clarke IN (2000) Molecular characterization of a bacteriophage (Chp2) from Chlamydia psittaci. J Virol 74:3464–3469

    PubMed  CAS  Google Scholar 

  • Marvik OJ, Dokland T, Nokling RH, Jacobsen E, Larsen T, Lindqvist BH (1995) The capsid size-determining protein Sid forms an external scaffold on phage P4 procapsids. J Mol Biol 251:59–75

    PubMed  CAS  Google Scholar 

  • Masker WE, Serwer P (1982) DNA packaging in vitro by an isolated bacteriophage T7 procapsid. J Virol 43:1138–1142

    PubMed  CAS  Google Scholar 

  • Matusick-Kumar L, Hurlburt W, Weinheimer SP, Newcomb WW, Brown JC, Gao M (1994) Phenotype of the herpes simplex virus type 1 protease substrate ICP35 mutant virus. J Virol 68:5384–5394

    PubMed  CAS  Google Scholar 

  • Matusick-Kumar L, Newcomb WW, Brown JC, McCann PJ 3rd, Hurlburt W, Weinheimer SP, Gao M (1995) The C-terminal 25 amino acids of the protease and its substrate ICP35 of herpes simplex virus type 1 are involved in the formation of sealed capsids. J Virol 69:4347–4356

    PubMed  CAS  Google Scholar 

  • Morais MC, Kanamaru S, Badasso MO, Koti JS, Owen BA, McMurray CT, Anderson DL, Rossmann MG (2003) Bacteriophage phi29 scaffolding protein gp7 before and after prohead assembly. Nat Struct Biol 10:572–576

    PubMed  CAS  Google Scholar 

  • Morais MC, Fisher M, Kanamaru S, Przybyla L, Burgner J, Fane BA, Rossmann MG (2004) Conformational switching by the scaffolding protein D directs the assembly of bacteriophage phiX174. Mol Cell 15:991–997

    PubMed  CAS  Google Scholar 

  • Nemecek D, Overman SA, Hendrix RW, Thomas GJ Jr (2009) Unfolding thermodynamics of the Delta-domain in the prohead I subunit of phage HK97: determination by factor analysis of Raman spectra. J Mol Biol 385:628–641

    PubMed  CAS  Google Scholar 

  • Newcomb WW, Trus BL, Cheng N, Steven AC, Sheaffer AK, Tenney DJ, Weller SK, Brown JC (2000) Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J Virol 74:1663–1673

    PubMed  CAS  Google Scholar 

  • Newcomb WW, Homa FL, Thomsen DR, Brown JC (2001) In vitro assembly of the herpes simplex virus procapsid: formation of small procapsids at reduced scaffolding protein concentration. J Struct Biol 133:23–31

    PubMed  CAS  Google Scholar 

  • Novak CR, Fane BA (2004) The functions of the N terminus of the phiX174 internal scaffolding protein, a protein encoded in an overlapping reading frame in a two scaffolding protein system. J Mol Biol 335:383–390

    PubMed  CAS  Google Scholar 

  • Oien NL, Thomsen DR, Wathen MW, Newcomb WW, Brown JC, Homa FL (1997) Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: critical role of the C terminus. J Virol 71:1281–1291

    PubMed  CAS  Google Scholar 

  • Paredes R, Sagar M, Marconi VC, Hoh R, Martin JN, Parkin NT, Petropoulos CJ, Deeks SG, Kuritzkes DR (2009) In vivo fitness cost of the M184V mutation in multidrug-resistant human immunodeficiency virus type 1 in the absence of lamivudine. J Virol 83:2038–2043

    PubMed  CAS  Google Scholar 

  • Parent KN, Doyle SM, Anderson E, Teschke CM (2005) Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly. Virology 340:33–45

    PubMed  CAS  Google Scholar 

  • Parker MH, Prevelige PE Jr (1998) Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22. Virology 250:337–349

    PubMed  CAS  Google Scholar 

  • Parker MH, Stafford WF 3rd, Prevelige PE Jr (1997) Bacteriophage P22 scaffolding protein forms oligomers in solution. J Mol Biol 268:655–665

    PubMed  CAS  Google Scholar 

  • Parker MH, Casjens S, Prevelige PE Jr (1998) Functional domains of bacteriophage P22 scaffolding protein. J Mol Biol 281:69–79

    PubMed  CAS  Google Scholar 

  • Parker MH, Brouillette CG, Prevelige PE Jr (2001) Kinetic and calorimetric evidence for two distinct scaffolding protein binding populations within the bacteriophage P22 procapsid. Biochemistry 40:8962–8970

    PubMed  CAS  Google Scholar 

  • Poh SL, el Khadali F, Berrier C, Lurz R, Melki R, Tavares P (2008) Oligomerization of the SPP1 scaffolding protein. J Mol Biol 378:551–564

    PubMed  CAS  Google Scholar 

  • Poliakov A, Chang JR, Spilman MS, Damle PK, Christie GE, Mobley JA, Dokland T (2008) Capsid size determination by Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of SaPI1 proteins into procapsids. J Mol Biol 380:465–475

    PubMed  CAS  Google Scholar 

  • Poteete AR, Jarvik V, Botstein D (1979) Encapsulation of phage P22 DNA in vitro. Virology 95:550–564

    PubMed  CAS  Google Scholar 

  • Preston VG, Kennard J, Rixon FJ, Logan AJ, Mansfield RW, McDougall IM (1997) Efficient herpes simplex virus type 1 (HSV-1) capsid formation directed by the varicella-zoster virus scaffolding protein requires the carboxy-terminal sequences from the HSV-1 homologue. J Gen Virol 78(Pt 7):1633–1646

    PubMed  CAS  Google Scholar 

  • Prevelige PE Jr, Thomas D, King J (1988) Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J Mol Biol 202:743–757

    PubMed  CAS  Google Scholar 

  • Prevelige PE Jr, Thomas D, King J (1993) Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J 64:824–835

    PubMed  CAS  Google Scholar 

  • Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    PubMed  CAS  Google Scholar 

  • Rishovd S, Lindqvist B (1992) Bacteriophage P2 and P4 morphogenesis: protein processing and capsid size determination. Virology 187:548–554

    PubMed  CAS  Google Scholar 

  • Rokyta DR, Burch CL, Caudle SB, Wichman HA (2006) Horizontal gene transfer and the evolution of microvirid coliphage genomes. J Bacteriol 188:1134–1142

    PubMed  CAS  Google Scholar 

  • Rossmann MG (1984) Constraints on the assembly of spherical virus particles. Virology 134:1–11

    PubMed  CAS  Google Scholar 

  • Salim O, Skilton RJ, Lambden PR, Fane BA, Clarke IN (2008) Behind the chlamydial cloak: the replication cycle of chlamydiaphage Chp2, revealed. Virology 377:440–445

    PubMed  CAS  Google Scholar 

  • Salvati AL, De Dominicis A, Tait S, Canitano A, Lahm A, Fiore L (2004) Mechanism of action at the molecular level of the antiviral drug 3(2H)-isoflavene against type 2 poliovirus. Antimicrob Agents Chemother 48:2233–2243

    PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Friedmann T, Air GM, Barrell BG, Brown NL, Fiddes JC, Hutchison CA 3rd, Slocombe PM, Smith M (1978) The nucleotide sequence of bacteriophage phiX174. J Mol Biol 125:225–246

    PubMed  CAS  Google Scholar 

  • Shibata H, Fujisawa H, Minagawa T (1987a) Early events in DNA packaging in a defined in vitro system of bacteriophage T3. Virology 159:250–258

    PubMed  CAS  Google Scholar 

  • Shibata H, Fujisawa H, Minagawa T (1987b) Characterization of the bacteriophage T3 DNA packaging reaction in vitro in a defined system. J Mol Biol 196:845–851

    PubMed  CAS  Google Scholar 

  • Siden EJ, Hayashi M (1974) Role of the gene beta-product in bacteriophage phi-X174 development. J Mol Biol 89:1–16

    PubMed  CAS  Google Scholar 

  • Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG (2000) Structure of the bacteriophage phi29 DNA packaging motor. Nature 408:745–750

    PubMed  CAS  Google Scholar 

  • Singer GP, Newcomb WW, Thomsen DR, Homa FL, Brown J (2005) Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J Virol 79:132–139

    PubMed  CAS  Google Scholar 

  • Six EW, Sunshine MG, Williams J, Haggard-Ljungquist E, Lindqvist BH (1991) Morphopoietic switch mutations of bacteriophage P2. Virology 182:34–46

    PubMed  CAS  Google Scholar 

  • Spilman MS, Dearborn AD, Chang JR, Damle PK, Christie GE, Dokland TA (2011) Conformational switch involved in maturation of Staphylococcus aureus bacteriophage 80 alpha capsids. J Mol Biol 405:863–876

    PubMed  CAS  Google Scholar 

  • Stonehouse NJ, Stockley PG (1993) Effects of amino acid substitution on the thermal stability of MS2 capsids lacking genomic RNA. FEBS Lett 334:355–359

    PubMed  CAS  Google Scholar 

  • Sun Y, Parker MH, Weigele P, Casjens S, Prevelige PE Jr, Krishna NR (2000) Structure of the coat protein-binding domain of the scaffolding protein from a double-stranded DNA virus. J Mol Biol 297:1195–1202

    PubMed  CAS  Google Scholar 

  • Tang J, Johnson JM, Dryden KA, Young MJ, Zlotnick A, Johnson JE (2006) The role of subunit hinges and molecular “switches” in the control of viral capsid polymorphism. J Struct Biol 154:59–67

    PubMed  CAS  Google Scholar 

  • Thuman-Commike PA, Greene B, Jakana J, Prasad BV, King J, Prevelige PE Jr, Chiu W (1996) Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy. J Mol Biol 260:85–98

    PubMed  CAS  Google Scholar 

  • Thuman-Commike PA, Greene B, Malinski JA, Burbea M, McGough A, Chiu W, Prevelige PE Jr (1999) Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-­lacking P22 procapsids. Biophys J 76:3267–3277

    PubMed  CAS  Google Scholar 

  • Tonegawa S, Hayashi M (1970) Intermediates in the assembly of phi X174. J Mol Biol 48:219–242

    PubMed  CAS  Google Scholar 

  • Trus BL, Booy FP, Newcomb WW, Brown JC, Homa FL, Thomsen DR, Steven AC (1996) The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol 263:447–462

    PubMed  CAS  Google Scholar 

  • Tuma R, Parker MH, Weigele P, Sampson L, Sun Y, Krishna NR, Casjens S, Thomas GJ Jr, Prevelige PE Jr (1998) A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein. J Mol Biol 281:81–94

    PubMed  CAS  Google Scholar 

  • Tuma R, Tsuruta H, French KH, Prevelige PE (2008) Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid. J Mol Biol 381:1395–1406

    PubMed  CAS  Google Scholar 

  • Ubeda C, Maiques E, Barry P, Matthews A, Tormo MA, Lasa I, Novick RP, Penades JR (2008) SaPI mutations affecting replication and transfer and enabling autonomous replication in the absence of helper phage. Mol Microbiol 67:493–503

    PubMed  CAS  Google Scholar 

  • Uchiyama A, Fane BA (2005) Identification of an interacting coat-external scaffolding protein domain required for both the initiation of phiX174 procapsid morphogenesis and the completion of DNA packaging. J Virol 79:6751–6756

    PubMed  CAS  Google Scholar 

  • Uchiyama A, Chen M, Fane BA (2007) Characterization and function of putative substrate specificity domain in microvirus external scaffolding proteins. J Virol 81:8587–8592

    PubMed  CAS  Google Scholar 

  • Uchiyama A, Heiman P, Fane BA (2009) N-terminal deletions of the phiX174 external scaffolding protein affect the timing and fidelity of assembly. Virology 386:303–309

    PubMed  CAS  Google Scholar 

  • Verlinden Y, Cuconati A, Wimmer E, Rombaut B (2000) Cell-free synthesis of poliovirus: 14S subunits are the key intermediates in the encapsidation of poliovirus RNA. J Gen Virol 81:2751–2754

    PubMed  CAS  Google Scholar 

  • Wang S, Palasingam P, Nokling RH, Lindqvist BH, Dokland T (2000) In vitro assembly of bacteriophage P4 procapsids from purified capsid and scaffolding proteins. Virology 275:133–144

    PubMed  CAS  Google Scholar 

  • Wang S, Chang JR, Dokland T (2006) Assembly of bacteriophage P2 and P4 procapsids with internal scaffolding protein. Virology 348:133–140

    PubMed  CAS  Google Scholar 

  • Weigele PR, Sampson L, Winn-Stapley D, Casjens SR (2005) Molecular genetics of bacteriophage P22 scaffolding protein’s functional domains. J Mol Biol 348:831–844

    PubMed  CAS  Google Scholar 

  • Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE (2000) Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289:2129–2133

    PubMed  CAS  Google Scholar 

  • Zhou ZH, Macnab SJ, Jakana J, Scott LR, Chiu W, Rixon FJ (1998) Identification of the sites of interaction between the scaffold and outer shell in herpes simplex virus-1 capsids by difference electron imaging. Proc Natl Acad Sci USA 95:2778–2783

    PubMed  CAS  Google Scholar 

  • Zhou Y, Bartels DJ, Hanzelka BL, Muh U, Wei Y, Chu HM, Tigges AM, Brennan DL, Rao BG, Swenson L, Kwong AD, Lin C (2008) Phenotypic characterization of resistant Val36 variants of hepatitis C virus NS3-4A serine protease. Antimicrob Agents Chemother 52:110–120

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Prevelige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prevelige, P.E., Fane, B.A. (2012). Building the Machines: Scaffolding Protein Functions During Bacteriophage Morphogenesis. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_14

Download citation

Publish with us

Policies and ethics