Skip to main content

Single-Molecule Studies of Viral DNA Packaging

  • Chapter
  • First Online:
Viral Molecular Machines

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

Many double-stranded DNA bacteriophages and viruses use specialized ATP-driven molecular machines to package their genomes into tightly confined procapsid shells. Over the last decade, single-molecule approaches – and in particular, optical tweezers – have made key contributions to our understanding of this remarkable process. In this chapter, we review these advances and the insights they have provided on the packaging mechanisms of three bacteriophages: φ 29, λ, and T4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aathavan K, Politzer AT, Kaplan A, Moffitt JR, Chemla YR, Grimes S, Jardine PJ, Anderson DL, Bustamante C (2009) Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461:669–673

    PubMed  CAS  Google Scholar 

  • Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465

    PubMed  CAS  Google Scholar 

  • Ali I, Marenduzzo D, Yeomans JM (2006) Polymer packaging and ejection in viral capsids: shape matters. Phys Rev Lett 96:208102

    PubMed  CAS  Google Scholar 

  • Ashkin A (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    PubMed  CAS  Google Scholar 

  • Banroques J, Doere M, Dreyfus M, Linder P, Tanner NK (2010) Motif III in superfamily 2 “helicase” helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1. J Mol Biol 396:949–966

    PubMed  CAS  Google Scholar 

  • Baumann RG, Black LW (2003) Isolation and characterization of T4 bacteriophage gp17 terminase, a large subunit multimer with enhanced ATPase activity. J Biol Chem 278:4618–4627

    PubMed  CAS  Google Scholar 

  • Baumann CG, Bloomfield VA, Smith SB, Bustamante C, Wang MD, Block SM (2000) Stretching of single collapsed DNA molecules. Biophys J 78:1965–1978

    PubMed  CAS  Google Scholar 

  • Baumann RG, Mullaney J, Black LW (2006) Portal fusion protein constraints on function in DNA packaging of bacteriophage T4. Mol Microbiol 61:16–32

    PubMed  CAS  Google Scholar 

  • Black LW (1989) DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol 43:267–292

    PubMed  CAS  Google Scholar 

  • Burton BM, Marquis KA, Sullivan NL, Rapoport TA, Rudner DZ (2007) The ATPase SpoIIIE transports DNA across fused septal membranes during sporulation in Bacillus subtilis. Cell 131:1301–1312

    PubMed  CAS  Google Scholar 

  • Bustamante C, Smith SB, Liphardt J, Smith D (2000) Single-molecule studies of DNA mechanics. Curr Opin Struct Biol 10:279–285

    PubMed  CAS  Google Scholar 

  • Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    PubMed  CAS  Google Scholar 

  • Carter AR, Seol Y, Perkins TT (2009) Precision surface-coupled optical-trapping assay with one-basepair resolution. Biophys J 96:2926–2934

    PubMed  CAS  Google Scholar 

  • Casjens S, Wyckoff E, Hayden M, Sampson L, Eppler K, Randall S, Moreno ET, Serwer P (1992) Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J Mol Biol 224:1055–1074

    PubMed  CAS  Google Scholar 

  • Catalano CE (ed) (2005) Viral genome packaging machines: genetics, structure, and mechanism. Kluwer, New York

    Google Scholar 

  • Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    PubMed  CAS  Google Scholar 

  • Cerritelli ME, Cheng NQ, Rosenberg AH, McPherson CE, Booy FP, Steven AC (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91:271–280

    PubMed  CAS  Google Scholar 

  • Chemla YR (2010) Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps. Phys Chem Chem Phys 12:3080–3095

    PubMed  CAS  Google Scholar 

  • Chemla YR, Aathavan K, Michaelis J, Grimes S, Jardine PJ, Anderson DL, Bustamante C (2005) Mechanism of force generation of a viral DNA packaging motor. Cell 122:683–692

    PubMed  CAS  Google Scholar 

  • Comolli LR, Spakowitz AJ, Siegerist CE, Jardine PJ, Grimes S, Anderson DL, Bustamante C, Downing KH (2008) Three-dimensional architecture of the bacteriophage phi29 packaged genome and elucidation of its packaging process. Virology 371:267–277

    PubMed  CAS  Google Scholar 

  • Cordin O, Tanner NK, Doere M, Linder P, Banroques J (2004) The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 23:2478–2487

    PubMed  CAS  Google Scholar 

  • Cue D, Feiss M (1997) Genetic evidence that recognition of cosQ the signal for termination of phage lambda DNA packaging, depends on the extent of head filling. Genetics 147:7–17

    PubMed  CAS  Google Scholar 

  • Dokland T, Murialdo H (1993) Structural transitions during maturation of bacteriophage lambda capsids. J Mol Biol 233:682–694

    PubMed  CAS  Google Scholar 

  • Draper B, Rao VB (2007) An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests an inchworm-type translocation mechanism. J Mol Biol 369:79–94

    PubMed  CAS  Google Scholar 

  • Duffy C, Feiss M (2002) The large subunit of bacteriophage lambda’s terminase plays a role in DNA translocation and packaging termination. J Mol Biol 316:547–561

    PubMed  CAS  Google Scholar 

  • Evilevitch A, Lavelle L, Knobler CM, Raspaud E, Gelbart WM (2003) Osmotic pressure inhibition of DNA ejection from phage. Proc Natl Acad Sci USA 100:9292–9295

    PubMed  CAS  Google Scholar 

  • Evilevitch A, Castelnovo M, Knobler CM, Gelbart WM (2004) Measuring the force ejecting DNA from phage. J Phys Chem B 108:6838–6843

    CAS  Google Scholar 

  • Evilevitch A, Gober JW, Phillips M, Knobler CM, Gelbart WM (2005) Measurements of DNA lengths remaining in a viral capsid after osmotically suppressed partial ejection. Biophys J 88:751–756

    PubMed  CAS  Google Scholar 

  • Feiss M & Catalano C (2005) Bacteriophage lambda terminase and the mechanism of viral DNA packaging. in Viral Genome Packaging Machines: Genetics, Structure, and Mechanism”, Springer US, pp. 5–39

    Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    PubMed  CAS  Google Scholar 

  • Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci USA 101:6003–6008

    PubMed  CAS  Google Scholar 

  • Forrey C, Muthukumar M (2006) Langevin dynamics simulations of genome packing in bacteriophage. Biophys J 91:25–41

    PubMed  CAS  Google Scholar 

  • Fujisawa H, Morita M (1997) Phage DNA packaging. Genes Cells 2:537–545

    PubMed  CAS  Google Scholar 

  • Fuller DN, Gemmen GJ, Rickgauer JP, Dupont A, Millin R, Recouvreux P, Smith DE (2006) A general method for manipulating DNA sequences from any organism with optical tweezers. Nucleic Acids Res 34:e15

    PubMed  Google Scholar 

  • Fuller DN, Raymer DM, Rickgauer JP, Robertson RM, Catalano CE, Anderson DL, Grimes S, Smith DE (2007a) Measurements of single DNA molecule packaging dynamics in bacteriophage lambda reveal high forces, high motor processivity, and capsid transformations. J Mol Biol 373:1113–1122

    PubMed  CAS  Google Scholar 

  • Fuller DN, Rickgauer JP, Jardine PJ, Grimes S, Anderson DL, Smith DE (2007b) Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29. Proc Natl Acad Sci USA 104:11245–11250

    PubMed  CAS  Google Scholar 

  • Fuller DN, Raymer DM, Kottadiel VI, Rao VB, Smith DE (2007c) Single phage T4 DNA packaging motors exhibit barge force generation, high velocity, and dynamic variability. Proc Natl Acad Sci USA 104:16868–16873

    PubMed  CAS  Google Scholar 

  • Gaussier H, Yang O, Catalano CE (2006) Building a virus from scratch: assembly of an infectious virus using purified components in a rigorously defined biochemical assay system. J Mol Biol 357:1154–1166

    PubMed  CAS  Google Scholar 

  • Gemmen GJ, Millin R, Smith DE (2006) DNA looping by two-site restriction endonucleases: heterogeneous probability distributions for loop size and unbinding force. Nucleic Acids Res 34:2864–2877

    PubMed  CAS  Google Scholar 

  • Gottesman ME, Weisberg RA (2004) Little lambda, who made thee? Microbiol Mol Biol Rev 68:796–813

    PubMed  CAS  Google Scholar 

  • Grayson P, Evilevitch A, Inamdar MM, Purohit PK, Gelbart WM, Knobler CM, Phillips R (2006) The effect of genome length on ejection forces in bacteriophage lambda. Virology 348:430–436

    PubMed  CAS  Google Scholar 

  • Grayson P, Han L, Winther T, Phillips R (2007) Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc Natl Acad Sci USA 104:14652–14657

    PubMed  CAS  Google Scholar 

  • Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171–190

    PubMed  CAS  Google Scholar 

  • Grimes S, Anderson D (1989) In vitro packaging of bacteriophage phi 29 DNA restriction fragments and the role of the terminal protein gp3. J Mol Biol 209:91–100

    PubMed  CAS  Google Scholar 

  • Grimes S, Anderson D (1997) The bacteriophage phi29 packaging proteins supercoil the DNA ends. J Mol Biol 266:901–914

    PubMed  CAS  Google Scholar 

  • Grimes S, Jardine PJ, Anderson D (2002) Bacteriophage phi 29 DNA packaging. Adv Virus Res 58:255–294

    PubMed  CAS  Google Scholar 

  • Guasch A, Pous J, Ibarra B, Gomis-Ruth FX, Valpuesta JM, Sousa N, Carrascosa JL, Coll M (2002) Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage phi29 connector particle. J Mol Biol 315:663–676

    PubMed  CAS  Google Scholar 

  • Guo P, Peterson C, Anderson D (1987) Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage phi 29. J Mol Biol 197:229–236

    PubMed  CAS  Google Scholar 

  • Hang JQ, Tack BF, Feiss M (2000) ATPase center of bacteriophage lambda terminase involved in post-cleavage stages of DNA packaging: identification of ATP-interactive amino acids. J Mol Biol 302:777–795

    PubMed  CAS  Google Scholar 

  • Harvey SC, Petrov AS, Devkota B, Boz MB (2009) Viral assembly: a molecular modeling perspective. Phys Chem Chem Phys 11:10553–10564

    PubMed  CAS  Google Scholar 

  • Hendrix RW (1978) Symmetry mismatch and DNA packaging in large bacteriophages. Proc Natl Acad Sci USA 75:4779–4783

    PubMed  CAS  Google Scholar 

  • Hugel T, Michaelis J, Hetherington CL, Jardine PJ, Grimes S, Walter JM, Falk W, Anderson DL, Bustamante C (2007) Experimental test of connector rotation during DNA packaging into bacteriophage phi29 capsids. PLoS Biol 5:e59

    PubMed  Google Scholar 

  • Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    PubMed  CAS  Google Scholar 

  • Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM (2001) DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci USA 98:13671–13674

    PubMed  CAS  Google Scholar 

  • Kondabagil KR, Zhang Z, Rao VB (2006) The DNA translocating ATPase of bacteriophage T4 packaging motor. J Mol Biol 363:486–499

    Google Scholar 

  • Lander GC, Tang L, Casjens SR, Gilcrease EB, Prevelige P, Poliakov A, Potter CS, Carragher B, Johnson JE (2006) The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312:1791–1795

    PubMed  CAS  Google Scholar 

  • Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE (2008) Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure 16:1399–1406

    PubMed  CAS  Google Scholar 

  • Lebedev AA, Krause MH, Isidro AL, Vagin AA, Orlova EV, Turner J, Dodson EJ, Tavares P, Antson AA (2007) Structural framework for DNA translocation via the viral portal protein. EMBO J 26:1984–1994

    PubMed  CAS  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  • Lisal J, Lam TT, Kainov DE, Emmett MR, Marshall AG, Tuma R (2005) Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nat Struct Mol Biol 12:460–466

    PubMed  CAS  Google Scholar 

  • Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282:1877–1882

    PubMed  CAS  Google Scholar 

  • Maluf NK, Gaussier H, Bogner E, Feiss M, Catalano CE (2006) Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine. Biochemistry (N Y) 45:15259–15268

    CAS  Google Scholar 

  • Mangenot S, Hochrein M, Radler J, Letellier L (2005) Real-time imaging of DNA ejection from single phage particles. Curr Biol 15:430–435

    PubMed  CAS  Google Scholar 

  • Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    PubMed  CAS  Google Scholar 

  • Marenduzzo D, Micheletti C (2003) Thermodynamics of DNA packaging inside a viral capsid: the role of DNA intrinsic thickness. J Mol Biol 330:485–492

    PubMed  CAS  Google Scholar 

  • Michaelis J, Muschielok A, Andrecka J, Kugel W, Moffitt JR (2009) DNA based molecular motors. Phys Life Rev 6:250–255

    PubMed  Google Scholar 

  • Mitchell MS, Rao VB (2004) Novel and deviant Walker A ATP-binding motifs in bacteriophage large terminase-DNA packaging proteins. Virology 321:217–221

    PubMed  CAS  Google Scholar 

  • Mitchell MS, Matsuzaki S, Imai S, Rao VB (2002) Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucleic Acids Res 30:4009–4021

    PubMed  CAS  Google Scholar 

  • Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci USA 103:9006–9011

    PubMed  CAS  Google Scholar 

  • Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228

    PubMed  CAS  Google Scholar 

  • Moffitt JR, Chemla YR, Aathavan K, Grimes S, Jardine PJ, Anderson DL, Bustamante C (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–450

    PubMed  CAS  Google Scholar 

  • Moffitt JR, Chemla YR, Bustamante C (2010) Mechanistic constraints from the substrate concentration dependence of enzymatic fluctuations. Proc Natl Acad Sci USA 107:15739–15744

    PubMed  CAS  Google Scholar 

  • Morais MC, Choi KH, Koti JS, Chipman PR, Anderson DL, Rossmann MG (2005) Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29. Mol Cell 18:149–159

    PubMed  CAS  Google Scholar 

  • Morais MC, Koti JS, Bowman VD, Reyes-Aldrete E, Anderson DL, Rossmann MG (2008) Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor. Structure 16:1267–1274

    PubMed  CAS  Google Scholar 

  • Morita M, Tasaka M, Fujisawa H (1993) DNA packaging ATPase of bacteriophage T3. Virology 193:748–752

    PubMed  CAS  Google Scholar 

  • Mosig G, Eiserling F (2006) T4 and related phages: structure and development. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford

    Google Scholar 

  • Murialdo H (1991) Bacteriophage lambda DNA maturation and packaging. Annu Rev Biochem 60:125–153

    PubMed  CAS  Google Scholar 

  • Myong S, Stevens BC, Ha T (2006) Bridging conformational dynamics and function using single-molecule spectroscopy. Structure 14:633–643

    PubMed  CAS  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    PubMed  CAS  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    PubMed  CAS  Google Scholar 

  • Odijk T (1998) Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress. Biophys J 75:1223–1227

    PubMed  CAS  Google Scholar 

  • Oram M, Sabanayagam C, Black LW (2008) Modulation of the packaging reaction of bacteriophage t4 terminase by DNA structure. J Mol Biol 381:61–72

    PubMed  CAS  Google Scholar 

  • Oster G, Wang H (2000) Reverse engineering a protein: the mechanochemistry of ATP synthase. Biochim Biophys Acta 1458:482–510

    PubMed  CAS  Google Scholar 

  • Oster G, Wang H (2003) Rotary protein motors. Trends Cell Biol 13:114–121

    PubMed  CAS  Google Scholar 

  • Perkins TT, Li HW, Dalal RV, Gelles J, Block SM (2004) Forward and reverse motion of single RecBCD molecules on DNA. Biophys J 86:1640–1648

    PubMed  CAS  Google Scholar 

  • Perucchetti R, Parris W, Becker A, Gold M (1988) Late stages in bacteriophage lambda head morphogenesis: in vitro studies on the action of the bacteriophage lambda D-gene and W-gene products. Virology 165:103–114

    PubMed  CAS  Google Scholar 

  • Purohit PK, Kondev J, Phillips R (2003) Mechanics of DNA packaging in viruses. Proc Natl Acad Sci USA 100:3173–3178

    PubMed  CAS  Google Scholar 

  • Purohit PK, Inamdar MM, Grayson PD, Squires TM, Kondev J, Phillips R (2005) Forces during bacteriophage DNA packaging and ejection. Biophys J 88:851–866

    PubMed  CAS  Google Scholar 

  • Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    PubMed  CAS  Google Scholar 

  • Rau DC, Parsegian VA (1992) Direct measurement of the intermolecular forces between counterion-condensed DNA double helices – evidence for long-range attractive hydration forces. Biophys J 61:246–259

    PubMed  CAS  Google Scholar 

  • Ray K, Ma J, Oram M, Lakowicz JR, Black LW (2010a) Single-molecule and FRET fluorescence correlation spectroscopy analyses of phage DNA packaging: colocalization of packaged phage T4 DNA ends within the capsid. J Mol Biol 395:1102–1113

    PubMed  CAS  Google Scholar 

  • Ray K, Sabanayagam CR, Lakowicz JR, Black LW (2010b) DNA crunching by a viral packaging motor: compression of a procapsid-portal stalled Y-DNA substrate. Virology 398:224–232

    PubMed  CAS  Google Scholar 

  • Rickgauer, JP and Smith, DE (2008) Single-Molecule Studies of DNA: Visualization and Manipulation of Individual DNA Molecules with Fluorescence Microscopy and Optical Tweezers. In: Borsali R and Pecora R (ed) Soft Matter: Scattering, Imaging and Manipulation, Vol. 4, Springer

    Google Scholar 

  • Rickgauer JP, Fuller DN, Smith DE (2006) DNA as a metrology standard for length and force measurements with optical tweezers. Biophys J 91:4253–4257

    PubMed  CAS  Google Scholar 

  • Rickgauer JP, Fuller DN, Grimes S, Jardine PJ, Anderson DL, Smith DE (2008) Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. Biophys J 94:159–167

    PubMed  CAS  Google Scholar 

  • Riemer SC, Bloomfield VA (1978) Packaging of DNA in bacteriophage heads – some considerations on energetics. Biopolymers 17:785–794

    PubMed  CAS  Google Scholar 

  • Robertson RM, Laib S, Smith DE (2006) Diffusion of isolated DNA molecules: dependence on length and topology. Proc Natl Acad Sci USA 103:7310–7314

    PubMed  CAS  Google Scholar 

  • Ross JL, Ali MY, Warshaw DM (2008) Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20:41–47

    PubMed  CAS  Google Scholar 

  • Sabanayagam CR, Oram M, Lakowicz JR, Black LW (2007) Viral DNA packaging studied by fluorescence correlation spectroscopy. Biophys J 93:L17–L19

    PubMed  CAS  Google Scholar 

  • Shu D, Zhang H, Jin J, Guo P (2007) Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J 26:527–537

    PubMed  CAS  Google Scholar 

  • Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG (2000) Structure of the bacteriophage phi29 DNA packaging motor. Nature 408:745–750

    PubMed  CAS  Google Scholar 

  • Sippy J, Feiss M (2004) Initial cos cleavage of bacteriophage lambda concatemers requires proheads and gpFI in vivo. Mol Microbiol 52:501–513

    PubMed  CAS  Google Scholar 

  • Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C (2001) The bacteriophage phi29 portal motor can package DNA against a large internal force. Nature 413:748–752

    PubMed  CAS  Google Scholar 

  • Smith SB, Cui Y, Bustamante C (2003) Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 361:134

    PubMed  CAS  Google Scholar 

  • Spakowitz AJ, Wang ZG (2005) DNA packaging in bacteriophage: is twist important? Biophys J 88:3912–3923

    PubMed  CAS  Google Scholar 

  • Sternberg N, Weisberg R (1977) Packaging of coliphage lambda DNA. II. The role of the gene D protein. J Mol Biol 117:733–759

    PubMed  CAS  Google Scholar 

  • Sun S, Kondabagil K, Gentz PM, Rossmann MG, Rao VB (2007) The structure of the ATPase that powers DNA packaging into bacteriophage t4 procapsids. Mol Cell 25:943–949

    PubMed  CAS  Google Scholar 

  • Sun S, Kondabagil K, Draper B, Alam TI, Bowman VD, Zhang Z, Hegde S, Fokine A, Rossmann MG, Rao VB (2008) The structure of the Phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 135:1251–1262

    PubMed  CAS  Google Scholar 

  • Tinoco I Jr, Li PT, Bustamante C (2006) Determination of thermodynamics and kinetics of RNA reactions by force. Q Rev Biophys 39:325–360

    PubMed  CAS  Google Scholar 

  • Tsay JM, Sippy J, Feiss M, Smith DE (2009) The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction. Proc Natl Acad Sci USA 106:14355–14360

    PubMed  CAS  Google Scholar 

  • Tsay JM, Sippy J, DelToro D, Andrews BT, Draper B, Rao V, Catalano CE, Feiss M, Smith DE (2010) Mutations altering a structurally conserved loop-helix-loop region of a viral packaging motor change DNA translocation velocity and processivity. J Biol Chem 285:24282–24289

    PubMed  CAS  Google Scholar 

  • Tzlil S, Kindt JT, Gelbart WM, Ben-Shaul A (2003) Forces and pressures in DNA packaging and release from viral capsids. Biophys J 84:1616–1627

    PubMed  CAS  Google Scholar 

  • van Oijen AM, Blainey PC, Crampton DJ, Richardson CC, Ellenberger T, Xie XS (2003) Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301:1235–1238

    PubMed  Google Scholar 

  • Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907

    PubMed  CAS  Google Scholar 

  • Xue Q, Yeung ES (1995) Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373:681–683

    PubMed  CAS  Google Scholar 

  • Yang Q, Catalano CE (2003) Biochemical characterization of bacteriophage lambda genome packaging in vitro. Virology 305:276–287

    PubMed  CAS  Google Scholar 

  • Yang Q, Maluf NK, Catalano CE (2008) Packaging of a unit-length viral genome: the role of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in bacteriophage lambda. J Mol Biol 383:1037–1048

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann R. Chemla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chemla, Y.R., Smith, D.E. (2012). Single-Molecule Studies of Viral DNA Packaging. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_24

Download citation

Publish with us

Policies and ethics