Skip to main content

Short Noncontractile Tail Machines: Adsorption and DNA Delivery by Podoviruses

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 726))

Abstract

Tailed dsDNA bacteriophage virions bind to susceptible cells with the tips of their tails and then deliver their DNA through the tail into the cells to initiate infection. This chapter discusses what is known about this process in the short-tailed phages (Podoviridae). Their short tails require that many of these virions adsorb to the outer layers of the cell and work their way down to the outer membrane surface before releasing their DNA. Interestingly, the receptor-binding protein of many short-tailed phages (and some with long tails) has an enzymatic activity that cleaves their polysaccharide receptors. Reversible adsorption and irreversible adsorption to primary and secondary receptors are discussed, including how sequence divergence in tail fiber and tailspike proteins leads to different host specificities. Upon reaching the outer membrane of Gram-negative cells, some podoviral tail machines release virion proteins into the cell that help the DNA efficiently traverse the outer layers of the cell and/or prepare the cell cytoplasm for phage genome arrival. Podoviruses utilize several rather different variations on this theme. The virion DNA is then released into the cell; the energetics of this process is discussed. Phages like T7 and N4 deliver their DNA relatively slowly, using enzymes to pull the genome into the cell. At least in part this mechanism ensures that genes in late-entering DNA are not expressed at early times. On the other hand, phages like P22 probably deliver their DNA more rapidly so that it can be circularized before the cascade of gene expression begins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam G, Delbrück M (1968) Reduction in dimensionality in biological diffusion processes. In: Rich A, Davidson N (eds) Structural chemisty and molecular biology. W. H. Freeman and Company, San Francisco, pp 198–215

    Google Scholar 

  • Agirrezabala X, Martin-Benito J, Caston JR, Miranda R, Valpuesta JM, Carrascosa JL (2005) Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 24:3820–3829

    PubMed  CAS  Google Scholar 

  • Agirrezabala X, Velazquez-Muriel JA, Gomez-Puertas P, Scheres SH, Carazo JM, Carrascosa JL (2007) Quasi-atomic model of bacteriophage T7 procapsid shell: insights into the structure and evolution of a basic fold. Structure 15:461–472

    PubMed  CAS  Google Scholar 

  • Alcorlo M, Gonzalez-Huici V, Hermoso JM, Meijer WJ, Salas M (2007) The phage φ29 membrane protein p16.7, involved in DNA replication, is required for efficient ejection of the viral genome. J Bacteriol 189:5542–5549

    PubMed  CAS  Google Scholar 

  • Allison GE, Verma NK (2000) Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol 8:17–23

    PubMed  CAS  Google Scholar 

  • Anand VS, Patel SS (2006) Transient state kinetics of transcription elongation by T7 RNA polymerase. J Biol Chem 281:35677–35685

    PubMed  CAS  Google Scholar 

  • Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R. (2010) Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem 285:36768–36775

    PubMed  CAS  Google Scholar 

  • Astumian RD (1997) Thermodynamics and kinetics of a Brownian motor. Science 276:917–922

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay PN, Das Gupta B, Joshi A, Chakravorty M (1979) Is the injection of DNA enough to cause bacteriophage P22-induced changes in the cellular transport process of Salmonella typhimurium? J Virol 32:98–101

    PubMed  CAS  Google Scholar 

  • Baptista C, Santos MA, Sao-Jose C (2008) Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989–4996

    PubMed  CAS  Google Scholar 

  • Barbirz S, Muller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R (2008) Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 69:303–316

    PubMed  CAS  Google Scholar 

  • Baumann RG, Mullaney J, Black LW (2006) Portal fusion protein constraints on function in DNA packaging of bacteriophage T4. Mol Microbiol 61:16–32

    PubMed  CAS  Google Scholar 

  • Baxa U, Steinbacher S, Miller S, Weintraub A, Huber R, Seckler R (1996) Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. Biophys J 71:2040–2048

    PubMed  CAS  Google Scholar 

  • Bayer M, Iberer R, Bischof K, Rassi E, Stabentheiner E, Zellnig G, Koraimann G (2001) Functional and mutational analysis of p19, a DNA transfer protein with muramidase activity. J Bacteriol 183:3176–3183

    PubMed  CAS  Google Scholar 

  • Bayer ME, Thurow H, Bayer MH (1979) Penetration of the polysaccharide capsule of Escherichia coli (Bi161/42) by bacteriophage K29. Virology 94:95–118

    PubMed  CAS  Google Scholar 

  • Bayer ME, Takeda K, Uetake H (1980) Effects of receptor destruction by Salmonella bacteriophages epsilon 15 and c341. Virology 105:328–337

    PubMed  CAS  Google Scholar 

  • Bayer ME, Bayer MH (1981) Fast responses of bacterial membranes to virus adsorption: a fluorescence study. Proc Natl Acad Sci USA 78:5618–5622

    PubMed  CAS  Google Scholar 

  • Benson NR, Roth J (1997) A Salmonella phage-P22 mutant defective in abortive transduction. Genetics 145:17–27

    PubMed  CAS  Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219

    PubMed  CAS  Google Scholar 

  • Berget PB, Poteete AR (1980) Structure and functions of the bacteriophage P22 tail protein. J Virol 34:234–243

    PubMed  CAS  Google Scholar 

  • Bhardwaj A, Olia AS, Walker-Kopp N, Cingolani G (2007) Domain organization and polarity of tail needle gp26 in the portal vertex structure of bacteriophage P22. J Mol Biol 371:374–387

    PubMed  CAS  Google Scholar 

  • Bienkowska-Szewczyk K, Taylor A (1980) Murein transglycosylase from phage lambda lysate. Purification and properties. Biochim Biophys Acta 615:489–496

    PubMed  CAS  Google Scholar 

  • Botstein D, Waddell CH, King J (1973) Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. I. Genes, proteins, structures and DNA maturation. J Mol Biol 80:669–695

    PubMed  CAS  Google Scholar 

  • Bradley DE (1967) Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 31:230–314

    PubMed  CAS  Google Scholar 

  • Bull JJ, Vimr ER, Molineux IJ (2010) A tale of tails: Sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli. Virology 398:79–86

    PubMed  CAS  Google Scholar 

  • Canchaya C, Desiere F, McShan WM, Ferretti JJ, Parkhill J, Brussow H (2002) Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology 302:245–258

    PubMed  CAS  Google Scholar 

  • Cardarelli L, Lam R, Tuite A, Baker LA, Sadowski PD, Radford DR, Rubinstein JL, Battaile KP, Chirgadze N, Maxwell KL, Davidson AR (2010) The crystal structure of bacteriophage HK97 gp6: defining a large family of head-tail connector proteins. J Mol Biol 395:754–768

    PubMed  CAS  Google Scholar 

  • Casjens S, King J (1974) P22 morphogenesis. I: Catalytic scaffolding protein in capsid assembly. J Supramol Struct 2:202–224

    PubMed  CAS  Google Scholar 

  • Casjens S, Wyckoff E, Hayden M, Sampson L, Eppler K, Randall S, Moreno E, Serwer P (1992) Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J Mol Biol 224:1055–1074

    PubMed  CAS  Google Scholar 

  • Casjens S, Thuman-Commike P (2011) Evolution of mosaically related tailed phage genomes seen through the lens of phage P22 virion assembly. Virology 411:393–415

    PubMed  CAS  Google Scholar 

  • Cerritelli ME, Cheng N, Rosenberg AH, McPherson CE, Booy FP, Steven AC (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91:271–280

    PubMed  CAS  Google Scholar 

  • Chang CY, Kemp P, Molineux IJ (2010) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186

    PubMed  CAS  Google Scholar 

  • Chang J, Weigele P, King J, Chiu W, Jiang W (2006) Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Structure 14:1073–1082

    PubMed  CAS  Google Scholar 

  • Choi KH, McPartland J, Kaganman I, Bowman VD, Rothman-Denes LB, Rossmann MG (2008) Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4. J Mol Biol 378:726–736

    PubMed  CAS  Google Scholar 

  • Chopin A, Deveau H, Ehrlich SD, Moineau S, Chopin MC (2007) KSY1, a lactococcal phage with a T7-like transcription. Virology 365:1–9

    PubMed  CAS  Google Scholar 

  • Cohen DN, Erickson SE, Xiang Y, Rossmann MG, Anderson DL (2008) Multifunctional roles of a bacteriophage φ29 morphogenetic factor in assembly and infection. J Mol Biol 378:804–817

    PubMed  Google Scholar 

  • Comolli LR, Spakowitz AJ, Siegerist CE, Jardine PJ, Grimes S, Anderson DL, Bustamante C, Downing KH (2008) Three-dimensional architecture of the bacteriophage φ29 packaged genome and elucidation of its packaging process. Virology 371:267–277

    PubMed  CAS  Google Scholar 

  • Dai W, Hodes A, Hui WH, Gingery M, Miller JF, Zhou ZH (2010) Three-dimensional structure of tropism-switching Bordetella bacteriophage. Proc Natl Acad Sci USA 107:4347–4352

    PubMed  CAS  Google Scholar 

  • de Frutos M, Letellier L, Raspaud E (2005) DNA ejection from bacteriophage T5: analysis of the kinetics and energetics. Biophys J 88:1364–1370

    PubMed  Google Scholar 

  • Dobbins AT, George M Jr, Basham DA, Ford ME, Houtz JM, Pedulla ML, Lawrence JG, Hatfull GF, Hendrix RW (2004) Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J Bacteriol 186:1933–1944

    PubMed  CAS  Google Scholar 

  • Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S, Miller JF (2004) Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476–481

    PubMed  CAS  Google Scholar 

  • Drexler K, Dannull J, Hindennach I, Mutschler B, Henning U (1991) Single mutations in a gene for a tail fiber component of an Escherichia coli phage can cause an extension from a protein to a carbohydrate as a receptor. J Mol Biol 219:655–663

    PubMed  CAS  Google Scholar 

  • Earnshaw W, Casjens S (1980) DNA packaging by the double-stranded DNA bacteriophages. Cell 21:319–331

    PubMed  CAS  Google Scholar 

  • Ebel-Tsipis J, Botstein D (1971) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. 1. Exclusion of generalized transducing particles. Virology 45:629–637

    PubMed  CAS  Google Scholar 

  • Effantin G, Boulanger P, Neumann E, Letellier L, Conway JF (2006) Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J Mol Biol 361:993–1002

    PubMed  CAS  Google Scholar 

  • Emrich J, Streisinger G (1968) The role of phage lysozyme in the life cycle of phage T4. Virology 36:387–391

    PubMed  CAS  Google Scholar 

  • Evilevitch A, Lavelle L, Knobler CM, Raspaud E, Gelbart WM (2003) Osmotic pressure inhibition of DNA ejection from phage. Proc Natl Acad Sci USA 100:9292–9295

    PubMed  CAS  Google Scholar 

  • Falco SC, Laan KV, Rothman-Denes LB (1977) Virion-associated RNA polymerase required for bacteriophage N4 development. Proc Natl Acad Sci USA 74:520–523

    PubMed  CAS  Google Scholar 

  • Falco SC, Zehring W, Rothman-Denes LB (1980) DNA-dependent RNA polymerase from bacteriophage N4 virions. Purification and characterization. J Biol Chem 255:4339–4347

    PubMed  CAS  Google Scholar 

  • Feynman RP (1963) The Feynman lectures on physics. Addison-Wesley, Reading, MA

    Google Scholar 

  • Filali Maltouf A, Labedan B (1983) Host cell metabolic energy is not required for injection of bacteriophage T5 DNA. J Bacteriol 153:124–133

    PubMed  CAS  Google Scholar 

  • Filali Maltouf AK, Labedan B (1985) The energetics of the injection process of bacteriophage lambda DNA and the role of the ptsM/pel-encoded protein. Biochem Biophys Res Commun 130:1093–1101

    PubMed  CAS  Google Scholar 

  • Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci USA 101:6003–6008

    PubMed  CAS  Google Scholar 

  • Fraser JS, Yu Z, Maxwell KL, Davidson AR (2006) Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J Mol Biol 359:496–507

    PubMed  CAS  Google Scholar 

  • Garcia L, Molineux I (1995) Incomplete entry of bacteriophage T7 DNA into F plasmid-containing Escherichia coli. J Bacteriol 177:4077–4083

    PubMed  CAS  Google Scholar 

  • Garcia LR, Molineux IJ (1996) Transcription-independent DNA translocation of bacteriophage T7 DNA into Escherichia coli. J Bacteriol 178:6921–6929

    PubMed  CAS  Google Scholar 

  • Garcia LR, Molineux IJ (1999) Translocation and specific cleavage of bacteriophage T7 DNA in vivo by EcoKI. Proc Natl Acad Sci USA 96:12430–12435

    PubMed  CAS  Google Scholar 

  • George DG, Yeh LS, Barker WC (1983) Unexpected relationships between bacteriophage lambda hypothetical proteins and bacteriophage T4 tail-fiber proteins. Biochem Biophys Res Commun 115:1061–1068

    PubMed  CAS  Google Scholar 

  • Goldberg EB, Grinius L, Letellier L (1994) Recognition, attachment and injection. In: Karam J (ed) The molecular biology of bacteriophage T4. ASM Press, Washiington, DC, pp 347–356

    Google Scholar 

  • Gonzalez-Huici V, Alcorlo M, Salas M, Hermoso JM (2004a) Binding of phage φ29 architectural protein p6 to the viral genome: evidence for topological restriction of the phage linear DNA. Nucleic Acids Res 32:3493–3502

    PubMed  CAS  Google Scholar 

  • Gonzalez-Huici V, Salas M, Hermoso JM (2004b) The push-pull mechanism of bacteriophage φ29 DNA injection. Mol Microbiol 52:529–540

    PubMed  CAS  Google Scholar 

  • Gonzalez-Huici V, Salas M, Hermoso JM (2006) Requirements for Bacillus subtilis bacteriophage φ29 DNA ejection. Gene 374:19–25

    PubMed  CAS  Google Scholar 

  • Grayson P, Evilevitch A, Inamdar MM, Purohit PK, Gelbart WM, Knobler CM, Phillips R (2006) The effect of genome length on ejection forces in bacteriophage lambda. Virology 348:430–436

    PubMed  CAS  Google Scholar 

  • Grayson P, Han L, Winther T, Phillips R (2007) Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc Natl Acad Sci USA 104:14652–14657

    PubMed  CAS  Google Scholar 

  • Grayson P, Molineux IJ (2007) Is phage DNA ‘injected’ into cells – biologists and physicists can agree. Curr Opin Microbiol 10:401–409

    PubMed  CAS  Google Scholar 

  • Haggard-Ljungquist E, Halling C, Calendar R (1992) DNA sequences of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J Bacteriol 174:1462–1477

    PubMed  CAS  Google Scholar 

  • Hanfling P, Shashkov AS, Jann B, Jann K (1996) Analysis of the enzymatic cleavage (beta elimination) of the capsular K5 polysaccharide of Escherichia coli by the K5-specific coliphage: reexamination. J Bacteriol 178:4747–4750

    PubMed  CAS  Google Scholar 

  • Haynes LL, Rothman-Denes LB (1985) N4 virion RNA polymerase sites of transcription initiation. Cell 41:597–605

    PubMed  CAS  Google Scholar 

  • Heller K, Braun V (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J Bacteriol 139:32–38

    PubMed  CAS  Google Scholar 

  • Hendrix R, Casjens S (2005) Podoviridae. In: Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball A (eds) Virus taxonomy. Elsevier, Amsterdam, pp 71–79

    Google Scholar 

  • Hendrix RW, Duda RL (1992) Bacteriophage lambda PaPa: not the mother of all lambda phages. Science 258:1145–1148

    PubMed  CAS  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophge. J Gen Physiol 36:39–56

    PubMed  CAS  Google Scholar 

  • Hershey AD (1955) An upper limit to the protein content of the germinal substance of bacteriophage T2. Virology 1:108–127

    PubMed  CAS  Google Scholar 

  • Hofer B, Ruge M, Dreiseikelmann B (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177:3080–3086

    PubMed  CAS  Google Scholar 

  • Hoffman B, Levine M (1975a) Bacteriophage P22 virion protein which performs an essential early function. I. Analysis of 16-ts mutants. J Virol 16:1536–1546

    PubMed  CAS  Google Scholar 

  • Hoffman B, Levine M (1975b) Bacteriophage P22 virion protein which performs an essential early function. II. Characterization of the gene 16 function. J Virol 16:1547–1559

    PubMed  CAS  Google Scholar 

  • Hud NV, Downing KH (2001) Cryoelectron microscopy of lambda phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc Natl Acad Sci USA 98:14925–14930

    PubMed  CAS  Google Scholar 

  • Hugel T, Michaelis J, Hetherington CL, Jardine PJ, Grimes S, Walter JM, Falk W, Anderson DL, Bustamante C (2007) Experimental test of connector rotation during DNA packaging into bacteriophage φ29 capsids. PLoS Biol 5:e59

    PubMed  Google Scholar 

  • Isidro A, Santos MA, Henriques AO, Tavares P (2004) The high-resolution functional map of bacteriophage SPP1 portal protein. Mol Microbiol 51:949–962

    PubMed  CAS  Google Scholar 

  • Israel V (1976) Role of the bacteriophage P22 tail in the early stages of infection. J Virol 18:361–364

    PubMed  CAS  Google Scholar 

  • Israel V (1977) E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles. J Virol 23:91–97

    PubMed  CAS  Google Scholar 

  • Israel V (1978) A model for the adsorption of phage P22 to Salmonella typhimurium. J Gen Virol 40:669–673

    PubMed  CAS  Google Scholar 

  • Iwashita S, Kanegasaki S (1976) Deacetylation reaction catalyzed by Salmonella phage c341 and its baseplate parts. J Biol Chem 251:5361–5365

    PubMed  CAS  Google Scholar 

  • Jeembaeva M, Jonsson B, Castelnovo M, Evilevitch A (2010) DNA heats up: energetics of genome ejection from phage revealed by isothermal titration calorimetry. J Mol Biol 395:1079–1087

    PubMed  CAS  Google Scholar 

  • Jiang W, Li Z, Zhang Z, Baker ML, Prevelige PE Jr, Chiu W (2003) Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat Struct Biol 10:131–135

    PubMed  CAS  Google Scholar 

  • Jiang W, Chang J, Jakana J, Weigele P, King J, Chiu W (2006) Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439:612–616

    PubMed  CAS  Google Scholar 

  • Jiang W, Baker ML, Jakana J, Weigele PR, King J, Chiu W (2008) Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451:1130–1134

    PubMed  CAS  Google Scholar 

  • Johnson JE, Chiu W (2007) DNA packaging and delivery machines in tailed bacteriophages. Curr Opin Struct Biol 17:237–243

    PubMed  CAS  Google Scholar 

  • Joshi A, Siddiqi JZ, Rao GR, Chakravorty M (1982) MB78, a virulent bacteriophage of Salmonella typhimurium. J Virol 41:1038–1043

    PubMed  CAS  Google Scholar 

  • Kanamaru S, Gassner NC, Ye N, Takeda S, Arisaka F (1999) The C-terminal fragment of the precursor tail lysozyme of bacteriophage T4 stays as a structural component of the baseplate after cleavage. J Bacteriol 181:2739–2744

    PubMed  CAS  Google Scholar 

  • Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, Arisaka F, Rossmann MG (2002) Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553–557

    PubMed  CAS  Google Scholar 

  • Kanegasaki S, Wright A (1973) Studies on the mechanism of phage adsorption: interaction between phage epsilon15 and its cellular receptor. Virology 52:160–173

    PubMed  CAS  Google Scholar 

  • Kazmierczak K, Rothman-Denes L (2006) Bacteriophage N4. In: Calendar R (ed) The bacteriophages. Oxford University Press, Oxford, pp 302–314

    Google Scholar 

  • Kazmierczak KM, Davydova EK, Mustaev AA, Rothman-Denes LB (2002) The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 21:5815–5823

    PubMed  CAS  Google Scholar 

  • Kemp P, Gupta M, Molineux IJ (2004) Bacteriophage T7 DNA ejection into cells is initiated by an enzyme-like mechanism. Mol Microbiol 53:1251–1265

    PubMed  CAS  Google Scholar 

  • Kemp P, Garcia LR, Molineux IJ (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology 340:307–317

    PubMed  CAS  Google Scholar 

  • Kiino DR, Rothman-Denes LB (1989) Genetic analysis of bacteriophage N4 adsorption. J Bacteriol 171:4595–4602

    PubMed  CAS  Google Scholar 

  • Kiino DR, Licudine R, Wilt K, Yang DH, Rothman-Denes LB (1993a) A cytoplasmic protein, NfrC, is required for bacteriophage N4 adsorption. J Bacteriol 175:7074–7080

    PubMed  CAS  Google Scholar 

  • Kiino DR, Singer MS, Rothman-Denes LB (1993b) Two overlapping genes encoding membrane proteins required for bacteriophage N4 adsorption. J Bacteriol 175:7081–7085

    PubMed  CAS  Google Scholar 

  • King J, Lenk EV, Botstein D (1973) Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. II. Morphogenetic pathway. J Mol Biol 80:697–731

    PubMed  CAS  Google Scholar 

  • King MR, Vimr RP, Steenbergen SM, Spanjaard L, Plunkett G 3rd, Blattner FR, Vimr ER (2007) Escherichia coli K1-specific bacteriophage CUS-3 distribution and function in phase-variable capsular polysialic acid O acetylation. J Bacteriol 189:6447–6456

    PubMed  CAS  Google Scholar 

  • Krawiec S, Jimenez F, Garcia JA, Villanueva N, Sogo J, Salas M (1981) The orderly, in vitro emergence of DNA from bacteriophage φ29 particles. Virology 111:440–454

    PubMed  CAS  Google Scholar 

  • Kropinski AM (2000) Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J Bacteriol 182:6066–6074

    PubMed  CAS  Google Scholar 

  • Kropinski AM, Kovalyova IV, Billington SJ, Patrick AN, Butts BD, Guichard JA, Pitcher TJ, Guthrie CC, Sydlaske AD, Barnhill LM, Havens KA, Day KR, Falk DR, McConnell MR (2007) The genome of epsilon15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. Virology 369:234–244

    PubMed  CAS  Google Scholar 

  • Kuhn A, Kellenberger E (1985) Productive phage infection in Escherichia coli with reduced internal levels of the major cations. J Bacteriol 163:906–912

    PubMed  CAS  Google Scholar 

  • Kuhn HM, Meier-Dieter U, Mayer H (1988) ECA, the enterobacterial common antigen. FEMS Microbiol Rev 4:195–222

    PubMed  CAS  Google Scholar 

  • Labedan B, Goldberg EB (1979) Requirement for membrane potential in injection of phage T4 DNA. Proc Natl Acad Sci USA 76:4669–4673

    PubMed  CAS  Google Scholar 

  • Labedan B, Heller KB, Jasaitis AA, Wilson TH, Goldberg EB (1980) A membrane potential threshold for phage T4 DNA injection. Biochem Biophys Res Commun 93:625–630

    PubMed  CAS  Google Scholar 

  • Lander GC, Tang L, Casjens SR, Gilcrease EB, Prevelige P, Poliakov A, Potter CS, Carragher B, Johnson JE (2006) The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312:1791–1795

    PubMed  CAS  Google Scholar 

  • Lander GC, Khayat R, Li R, Prevelige PE, Potter CS, Carragher B, Johnson JE (2009) The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit. Structure 17:789–799

    PubMed  CAS  Google Scholar 

  • Landstrom J, Nordmark EL, Eklund R, Weintraub A, Seckler R, Widmalm G (2008) Interaction of a Salmonella enteritidis O-antigen octasaccharide with the phage P22 tailspike protein by NMR spectroscopy and docking studies. Glycoconj J 25:137–143

    PubMed  Google Scholar 

  • Lanni YT (1968) First-step-transfer deoxyribonucleic acid of bacteriophage T5. Bacteriol Rev 32:227–242

    PubMed  CAS  Google Scholar 

  • Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaert G (2003) The genome of bacteriophage φKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59

    PubMed  CAS  Google Scholar 

  • Lavigne R, Briers Y, Hertveldt K, Robben J, Volckaert G (2004) Identification and characterization of a highly thermostable bacteriophage lysozyme. Cell Mol Life Sci 61:2753–2759

    PubMed  CAS  Google Scholar 

  • Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414

    PubMed  CAS  Google Scholar 

  • Lebedev AA, Krause MH, Isidro AL, Vagin AA, Orlova EV, Turner J, Dodson EJ, Tavares P, Antson AA (2007) Structural framework for DNA translocation via the viral portal protein. EMBO J 26:1984–1994

    PubMed  CAS  Google Scholar 

  • Leforestier A, Brasiles S, de Frutos M, Raspaud E, Letellier L, Tavares P, Livolant F (2008) Bacteriophage T5 DNA ejection under pressure. J Mol Biol 384:730–739

    PubMed  CAS  Google Scholar 

  • Leforestier A, Livolant F (2009) Structure of toroidal DNA collapsed inside the phage capsid. Proc Natl Acad Sci USA 106:9157–9162

    PubMed  CAS  Google Scholar 

  • Leforestier A, Livolant F (2010) The bacteriophage genome undergoes a succession of intracapsid phase transitions upon DNA ejection. J Mol Biol 396:384–395

    PubMed  CAS  Google Scholar 

  • Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Muhlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ (2007) The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol 371:836–849

    PubMed  CAS  Google Scholar 

  • Leiman PG, Molineux IJ (2008) Evolution of a new enzyme activity from the same motif fold. Mol Microbiol 69:287–290

    PubMed  CAS  Google Scholar 

  • Lenk E, Casjens S, Weeks J, King J (1975) Intracellular visualization of precursor capsids in phage P22 mutant infected cells. Virology 68:182–199

    PubMed  CAS  Google Scholar 

  • Lin L (1992) Study of bacteriophage T7 gene 5.9 and gene 5.5. Ph.D. dissertation. SUNY, Sonybrook, New York

    Google Scholar 

  • Lindberg AA, Sarvas M, Makela PH (1970) Bacteriophage attachment to the somatic antigen of Salmonella: Effect of O-specific structures in leaky R mutants and S, T1 Hybrids. Infect Immun 1:88–97

    PubMed  CAS  Google Scholar 

  • Lipinska B, Rao AS, Bolten BM, Balakrishnan R, Goldberg EB (1989) Cloning and identification of bacteriophage T4 gene 2 product gp2 and action of gp2 on infecting DNA in vivo. J Bacteriol 171:488–497

    PubMed  CAS  Google Scholar 

  • Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, Maskell DJ, Simons RW, Cotter PA, Parkhill J, Miller JF (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:2091–2094

    PubMed  CAS  Google Scholar 

  • Liu M, Gingery M, Doulatov SR, Liu Y, Hodes A, Baker S, Davis P, Simmonds M, Churcher C, Mungall K, Quail MA, Preston A, Harvill ET, Maskell DJ, Eiserling FA, Parkhill J, Miller JF (2004) Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J Bacteriol 186:1503–1517

    PubMed  CAS  Google Scholar 

  • Liu X, Shi M, Kong S, Gao Y, An C (2007) Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: complete genome sequence and DNA translocation. Virology 366:28–39

    PubMed  CAS  Google Scholar 

  • Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, Dougherty MT, Schmid MF, Osburne MS, Chisholm SW, Chiu W (2010) Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol 17:830–836

    PubMed  CAS  Google Scholar 

  • Lu MJ, Henning U (1994) Superinfection exclusion by T-even-type coliphages. Trends Microbiol 2:137–139

    PubMed  CAS  Google Scholar 

  • Machida Y, Miyake K, Hattori K, Yamamoto S, Kawase M, Iijima S (2000) Structure and function of a novel coliphage-associated sialidase. FEMS Microbiol Lett 182:333–337

    PubMed  CAS  Google Scholar 

  • Mahony J, McGrath S, Fitzgerald GF, van Sinderen D (2008) Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl Environ Microbiol 74:6206–6215

    PubMed  CAS  Google Scholar 

  • Mangenot S, Hochrein M, Radler J, Letellier L (2005) Real-time imaging of DNA ejection from single phage particles. Curr Biol 15:430–435

    PubMed  CAS  Google Scholar 

  • McGrath S, Fitzgerald GF, van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43:509–520

    PubMed  CAS  Google Scholar 

  • McPartland J, Rothman-Denes LB (2009) The tail sheath of bacteriophage N4 interacts with the Escherichia coli receptor. J Bacteriol 191:525–532

    PubMed  CAS  Google Scholar 

  • Meijer WJ, Horcajadas JA, Salas M (2001a) φ29 family of phages. Microbiol Mol Biol Rev 65:261–287

    PubMed  CAS  Google Scholar 

  • Meijer WJ, Serna-Rico A, Salas M (2001b) Characterization of the bacteriophage φ29-encoded protein p16.7: a membrane protein involved in phage DNA replication. Mol Microbiol 39:731–746

    PubMed  CAS  Google Scholar 

  • Miller JL, Le Coq J, Hodes A, Barbalat R, Miller JF, Ghosh P (2008) Selective ligand recognition by a diversity-generating retroelement variable protein. PLoS Biol 6:e131

    PubMed  Google Scholar 

  • Mishra P, Prem Kumar R, Ethayathulla AS, Singh N, Sharma S, Perbandt M, Betzel C, Kaur P, Srinivasan A, Bhakuni V, Singh TP (2009) Polysaccharide binding sites in hyaluronate lyase – crystal structures of native phage-encoded hyaluronate lyase and its complexes with ascorbic acid and lactose. FEBS J 276:3392–3402

    PubMed  CAS  Google Scholar 

  • Moak M, Molineux IJ (2000) Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol Microbiol 37:345–355

    PubMed  CAS  Google Scholar 

  • Moak M, Molineux IJ (2004) Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol 51:1169–1183

    PubMed  CAS  Google Scholar 

  • Moffatt BA, Studier FW (1988) Entry of bacteriophage T7 DNA into the cell and escape from host restriction. J Bacteriol 170:2095–2105

    PubMed  CAS  Google Scholar 

  • Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8

    PubMed  CAS  Google Scholar 

  • Molineux IJ (2006) Fifty-three years since Hershey and Chase; much ado about pressure but which pressure is it? Virology 344:221–229

    PubMed  CAS  Google Scholar 

  • Morais MC, Choi KH, Koti JS, Chipman PR, Anderson DL, Rossmann MG (2005) Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of φ29. Mol Cell 18:149–159

    PubMed  CAS  Google Scholar 

  • Muller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U (2008) An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri phage Sf6. Structure 16:766–775

    PubMed  Google Scholar 

  • Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412–434

    PubMed  CAS  Google Scholar 

  • Olia AS, Al-Bassam J, Winn-Stapley DA, Joss L, Casjens SR, Cingolani G (2006) Binding-induced stabilization and assembly of the phage P22 tail accessory factor gp4. J Mol Biol 363:558–576

    PubMed  CAS  Google Scholar 

  • Olia AS, Bhardwaj A, Joss L, Casjens S, Cingolani G (2007a) Role of gene 10 protein in the hierarchical assembly of the bacteriophage P22 portal vertex structure. Biochemistry 46:8776–8784

    PubMed  CAS  Google Scholar 

  • Olia AS, Casjens S, Cingolani G (2007b) Structure of phage P22 cell envelope-penetrating needle. Nat Struct Mol Biol 14:1221–1227

    PubMed  CAS  Google Scholar 

  • Olia A, Prevelige P, Johnson J, Cingolani G (2011) Nat Struct Mol Biol 18:567–603

    PubMed  CAS  Google Scholar 

  • Olia AS, Casjens S, Cingolani G (2009) Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas. Protein Sci 18:537–548

    PubMed  CAS  Google Scholar 

  • Olson NH, Gingery M, Eiserling FA, Baker TS (2001) The structure of isometric capsids of bacteriophage T4. Virology 279:385–391

    PubMed  CAS  Google Scholar 

  • Palva ET, Mäkelä PH (1980) Lipopolysaccharide heterogeneity in Salmonella typhimurium analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eur J Biochem 107:137–143

    PubMed  CAS  Google Scholar 

  • Panja D, Molineux IJ (2010) Dynamics of bacteriophage genome ejection in vitro and in vivo. Phys Biol 7:045006

    PubMed  Google Scholar 

  • Perez GL, Huynh B, Slater M, Maloy S (2009) Transport of phage P22 DNA across the cytoplasmic membrane. J Bacteriol 191:135–140

    PubMed  CAS  Google Scholar 

  • Petrov AS, Locker CR, Harvey SC (2009) Characterization of DNA conformation inside bacterial viruses. Phys Rev E Stat Nonlin Soft Matter Phys 80:021914

    PubMed  Google Scholar 

  • Petter JG, Vimr ER (1993) Complete nucleotide sequence of the bacteriophage K1F tail gene encoding endo-N-acylneuraminidase (endo-N) and comparison to an endo-N homolog in bacteriophage PK1E. J Bacteriol 175:4354–4363

    PubMed  CAS  Google Scholar 

  • Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, Jiang W, Chiu W, Hatfull GF, Hendrix RW, King J (2007) Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a “horned” bacteriophage of marine synechococcus. J Mol Biol 368:966–981

    PubMed  CAS  Google Scholar 

  • Prehm P, Jann B, Jann K, Schmidt G, Stirm S (1976) On a bacteriophage T3 and T4 receptor region within the cell wall lipopolysaccharide of Escherichia coli B. J Mol Biol 101:277–281

    PubMed  CAS  Google Scholar 

  • Purohit PK, Inamdar MM, Grayson PD, Squires TM, Kondev J, Phillips R (2005) Forces during bacteriophage DNA packaging and ejection. Biophys J 88:851–866

    PubMed  CAS  Google Scholar 

  • Rao GR, Chakravorty-Burma M, Burma DP (1972) Transient depression in the active transport across the membrane of Salmonella typhimurium, after infection with bacteriophage P22. Virology 49:811–814

    PubMed  CAS  Google Scholar 

  • Rao RN (1968) Bacteriophage P22 controlled exclusion in Salmonella typhimurium. J Mol Biol 35:607–622

    PubMed  CAS  Google Scholar 

  • Raspaud E, Forth T, Sao-Jose C, Tavares P, de Frutos M (2007) A kinetic analysis of DNA ejection from tailed phages revealing the prerequisite activation energy. Biophys J 93:3999–4005

    PubMed  CAS  Google Scholar 

  • Rhoades M, Thomas CA Jr (1968) The P22 bacteriophage DNA molecule. II. Circular intracellular forms. J Mol Biol 37:41–61

    PubMed  CAS  Google Scholar 

  • Rickgauer JP, Fuller DN, Grimes S, Jardine PJ, Anderson DL, Smith DE (2008) Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage φ29. Biophys J 94:159–167

    PubMed  CAS  Google Scholar 

  • Rohr TE, Troy FA (1980) Structure and biosynthesis of surface polymers containing polysialic acid in Escherichia coli. J Biol Chem 255:2332–2342

    PubMed  CAS  Google Scholar 

  • Saigo K (1975) Polar DNA ejection in bacteriophage T7. Virology 65:120–127

    PubMed  CAS  Google Scholar 

  • Saigo K (1978) Isolation of high-density mutants and identification of nonessential structural proteins in bacteriophage T5; dispensability of L-shaped tail fibers and a secondary major head protein. Virology 85:422–433

    PubMed  CAS  Google Scholar 

  • Sandmeier H, Iida S, Arber W (1992) DNA inversion regions Min of plasmid p15B and Cin of bacteriophage P1: evolution of bacteriophage tail fiber genes. J Bacteriol 174:3936–3944

    PubMed  CAS  Google Scholar 

  • Sao-Jose C, de Frutos M, Raspaud E, Santos MA, Tavares P (2007) Pressure built by DNA packing inside virions: enough to drive DNA ejection in vitro, largely insufficient for delivery into the bacterial cytoplasm. J Mol Biol 374:346–355

    PubMed  CAS  Google Scholar 

  • Savalia D, Westblade LF, Goel M, Florens L, Kemp P, Akulenko N, Pavlova O, Padovan JC, Chait BT, Washburn MP, Ackermann HW, Mushegian A, Gabisonia T, Molineux I, Severinov K (2008) Genomic and proteomic analysis of φEco32, a novel Escherichia coli bacteriophage. J Mol Biol 377:774–789

    PubMed  CAS  Google Scholar 

  • Scholl D, Rogers S, Adhya S, Merril CR (2001) Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75:2509–2515

    PubMed  CAS  Google Scholar 

  • Scholl D, Kieleczawa J, Kemp P, Rush J, Richardson CC, Merril C, Adhya S, Molineux IJ (2004) Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J Mol Biol 335:1151–1171

    PubMed  CAS  Google Scholar 

  • Scholl D, Adhya S, Merril C (2005) Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 71:4872–4874

    PubMed  CAS  Google Scholar 

  • Schulz EC, Schwarzer D, Frank M, Stummeyer K, Muhlenhoff M, Dickmanns A, Gerardy-Schahn R, Ficner R (2010) Structural basis for the recognition and cleavage of polysialic acid by the bacteriophage K1F tailspike protein EndoNF. J Mol Biol 397:341–351

    PubMed  CAS  Google Scholar 

  • Schwarzer D, Stummeyer K, Gerardy-Schahn R, Muhlenhoff M (2007) Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J Biol Chem 282:2821–2831

    PubMed  CAS  Google Scholar 

  • Schwarzer D, Stummeyer K, Haselhorst T, Freiberger F, Rode B, Grove M, Scheper T, von Itzstein M, Muhlenhoff M, Gerardy-Schahn R (2009) Proteolytic release of the intramolecular chaperone domain confers processivity to endosialidase F. J Biol Chem 284:9465–9474

    PubMed  CAS  Google Scholar 

  • Serna-Rico A, Salas M, Meijer WJ (2002) The Bacillus subtilis phage φ29 protein p16.7, involved in φ29 DNA replication, is a membrane-localized single-stranded DNA-binding protein. J Biol Chem 277:6733–6742

    PubMed  CAS  Google Scholar 

  • Serwer P, Wright ET, Hakala KW, Weintraub ST (2008) Evidence for bacteriophage T7 tail extension during DNA injection. BMC Res Notes 1:36

    PubMed  Google Scholar 

  • Simon LD, Anderson TF (1967) The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology 32:279–297

    PubMed  CAS  Google Scholar 

  • Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG (2000) Structure of the bacteriophage φ29 DNA packaging motor. Nature 408:745–750

    PubMed  CAS  Google Scholar 

  • Smith D, Tans J, Smith S, Grimes S, Anderson D, Bustamante C (2001) The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413:748–752

    PubMed  CAS  Google Scholar 

  • Smith NL, Taylor EJ, Lindsay AM, Charnock SJ, Turkenburg JP, Dodson EJ, Davies GJ, Black GW (2005) Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix. Proc Natl Acad Sci USA 102:17652–17657

    PubMed  CAS  Google Scholar 

  • Steinbacher S, Seckler R, Miller S, Steipe B, Huber R, Reinemer P (1994) Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265:383–386

    PubMed  CAS  Google Scholar 

  • Steinbacher S, Baxa U, Miller S, Weintraub A, Seckler R, Huber R (1996) Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci USA 93:10584–10588

    PubMed  CAS  Google Scholar 

  • Steinbacher S, Miller S, Baxa U, Budisa N, Weintraub A, Seckler R, Huber R (1997) Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage. J Mol Biol 267:865–880

    PubMed  CAS  Google Scholar 

  • Steven AC, Trus BL, Maizel JV, Unser M, Parry DA, Wall JS, Hainfeld JF, Studier FW (1988) Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7. J Mol Biol 200:351–365

    PubMed  CAS  Google Scholar 

  • Stojković E, Rothman-Denes L (2007) Coliphage N4 N-acetylmuramidase defines a new family of murien hydrolases. J Mol Biol 366:406–419

    PubMed  CAS  Google Scholar 

  • Strauss H, King J (1984) Steps in the stabilization of newly packaged DNA during phage P22 morphogenesis. J Mol Biol 172:523–543

    PubMed  CAS  Google Scholar 

  • Struthers-Schlinke JS, Robins WP, Kemp P, Molineux IJ (2000) The internal head protein Gp16 controls DNA ejection from the bacteriophage T7 virion. J Mol Biol 301:35–45

    PubMed  CAS  Google Scholar 

  • Studier FW (1972) Bacteriophage T7. Science 176:367–376

    PubMed  CAS  Google Scholar 

  • Studier FW, Bandyopadhyay PK (1988) Model for how type I restriction enzymes select cleavage sites in DNA. Proc Natl Acad Sci USA 85:4677–4681

    PubMed  CAS  Google Scholar 

  • Stummeyer K, Dickmanns A, Muhlenhoff M, Gerardy-Schahn R, Ficner R (2005) Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat Struct Mol Biol 12:90–96

    PubMed  CAS  Google Scholar 

  • Stummeyer K, Schwarzer D, Claus H, Vogel U, Gerardy-Schahn R, Muhlenhoff M (2006) Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Mol Microbiol 60:1123–1135

    PubMed  CAS  Google Scholar 

  • Susskind MM, Wright A, Botstein D (1971) Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. II. Genetic evidence for two exclusion systems. Virology 45:638–652

    PubMed  CAS  Google Scholar 

  • Susskind MM, Botstein D (1978) Molecular genetics of bacteriophage P22. Microbiol Rev 42:385–413

    PubMed  CAS  Google Scholar 

  • Takeda K, Uetake H (1973) In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with Salmonella phage epsilon15. Virology 52:148–159

    CAS  Google Scholar 

  • Tan Y, Zhang K, Rao X, Jin X, Huang J, Zhu J, Chen Z, Hu X, Shen X, Wang L, Hu F (2007) Whole genome sequencing of a novel temperate bacteriophage of P. aeruginosa: evidence of tRNA gene mediating integration of the phage genome into the host bacterial chromosome. Cell Microbiol 9:479–491

    PubMed  CAS  Google Scholar 

  • Tang J, Olson N, Jardine PJ, Grimes S, Anderson DL, Baker TS (2008) DNA poised for release in bacteriophage φ29. Structure 16:935–943

    PubMed  CAS  Google Scholar 

  • Tang L, Marion WR, Cingolani G, Prevelige PE, Johnson JE (2005) Three-dimensional structure of the bacteriophage P22 tail machine. EMBO J 24:2087–2095

    PubMed  CAS  Google Scholar 

  • Tang L, Gilcrease EB, Casjens SR, Johnson JE (2006) Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure 14:837–845

    PubMed  CAS  Google Scholar 

  • Ter-Nikogosian VA, Vartanian MK, Trchunian AA (1991) Changes in membrane potential and transport of ions through the S. typhimurium LT2 membrane induced by bacteriophages. Biofizika 36:281–285

    PubMed  CAS  Google Scholar 

  • Tye BK, Huberman JA, Botstein D (1974) Non-random circular permutation of phage P22 DNA. J Mol Biol 85:501–528

    PubMed  CAS  Google Scholar 

  • Tzlil S, Kindt JT, Gelbart WM, Ben-Shaul A (2003) Forces and pressures in DNA packaging and release from viral capsids. Biophys J 84:1616–1627

    PubMed  CAS  Google Scholar 

  • Uetake H, Nakagawa T, Akiba T (1955) The relationship of bacteriophage to antigenic changes in Group E salmonellas. J Bacteriol 69:571–579

    PubMed  CAS  Google Scholar 

  • Uetake H, Hagiwara S (1969) Transfer of conversion gene(s) between different Salmonella phages g341 and epsilon-15. Virology 37:8–14

    PubMed  CAS  Google Scholar 

  • Umlauf B, Dreiseikelmann B (1992) Cloning, sequencing, and overexpression of gene 16 of Salmonella bacteriophage P22. Virology 188:495–501

    PubMed  CAS  Google Scholar 

  • Villafane R, Zayaz M, Gilcrease E, Kropinski A, Casjens S (2008) Genomic analysis of bacteriophage epsilon34 of Salmonella enterica serovar Anatum (15+). BMC Microbiol 8:e227

    Google Scholar 

  • Vinga I, Sao-Jose C, Traveres P, Santos M (2006) Bacteriophage entry into the host cell. In: Wegrzyn G (ed) Modern bacteriophage biology and biotechnology. Research Signpost, Kerala, India, pp 165–205

    Google Scholar 

  • Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T, Henderson RM, Edwardson JM, Dryden DT (2002) Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 9:187–194

    PubMed  CAS  Google Scholar 

  • Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, Llamas-Saiz AL, Seckler R, Miller S, van Raaij MJ (2008) Structure of the receptor-binding protein of bacteriophage Det7: a podoviral tail spike in a myovirus. J Virol 82:2265–2273

    PubMed  CAS  Google Scholar 

  • Wang HY, Elston T, Mogilner A, Oster G (1998a) Force generation in RNA polymerase. Biophys J 74:1186–1202

    PubMed  CAS  Google Scholar 

  • Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998b) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907

    PubMed  CAS  Google Scholar 

  • Willis SH, Kazmierczak KM, Carter RH, Rothman-Denes LB (2002) N4 RNA polymerase II, a heterodimeric RNA polymerase with homology to the single-subunit family of RNA polymerases. J Bacteriol 184:4952–4961

    PubMed  CAS  Google Scholar 

  • Wright A (1971) Mechanism of conversion of Salmonella O-antigen by bacteriophage epsilon 34. J Bacteriol 105:927–936

    PubMed  CAS  Google Scholar 

  • Xiang Y, Morais MC, Battisti AJ, Grimes S, Jardine PJ, Anderson DL, Rossmann MG (2006) Structural changes of bacteriophage φ29 upon DNA packaging and release. EMBO J 25:5229–5239

    PubMed  CAS  Google Scholar 

  • Xiang Y, Morais MC, Cohen DN, Bowman VD, Anderson DL, Rossmann MG (2008) Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage φ29 tail. Proc Natl Acad Sci USA 105:9552–9557

    PubMed  CAS  Google Scholar 

  • Xiang Y, Leiman PG, Li L, Grimes S, Anderson DL, Rossmann MG (2009) Crystallographic insights into the autocatalytic assembly mechanism of a bacteriophage tail spike. Mol Cell 34:375–386

    PubMed  Google Scholar 

  • Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J (1995) Transcription against an applied force. Science 270:1653–1657

    PubMed  CAS  Google Scholar 

  • Zarybnicky V (1969) Mechanism of T-even DNA ejection. J Theor Biol 22:33–42

    PubMed  CAS  Google Scholar 

  • Zavriev SK, Shemyakin MF (1982) RNA polymerase-dependent mechanism for the stepwise T7 phage DNA transport from the virion into E. coli. Nucleic Acids Res 10:1635–1652

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all our colleagues in this unusually collegial research field for many years of open and insightful discussions. We especially thank our own coworkers for their contributions to our respective research programs, which are supported by NIH grants GM32095 to IJM and AI074825 to SRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherwood R. Casjens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Casjens, S.R., Molineux, I.J. (2012). Short Noncontractile Tail Machines: Adsorption and DNA Delivery by Podoviruses. In: Rossmann, M., Rao, V. (eds) Viral Molecular Machines. Advances in Experimental Medicine and Biology, vol 726. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0980-9_7

Download citation

Publish with us

Policies and ethics