Skip to main content

Calcium Channels at the Photoreceptor Synapse

  • Chapter
Photoreceptors and Calcium

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 514))

Abstract

Presynaptic Ca2+channels mediate early stages of visual information processing in photoreceptors by facilitating the release of neurotransmitter and by receiving modulatory input that alters transmission. Two types of L-type Ca2+channels, composed of a1F and a1D subunits and having similar biophysical and pharmacological properties, appear to form the principle voltage-dependent Ca2+influx pathways in rods and cones, respectively. The role played by these channels in neurotransmitter release at these graded potential, non-spiking synapses, has been well described. The channels mediate sustained glutamate release in darkness where the cells rest at potentials near —40 mV, and signal increases in light intensity as the cells hyperpolarize negative to this value. Synaptic modulation and integration mediated by these channels has not yet been as fully described but appears to involve GABA, nitric oxide (NO), glutamate, and dopamine. Cal’ permeable cyclic nucleotide gated (CNG) channels appear to have supporting roles at the photoreceptor output synapse and may transduce NO signals from other cells by either directly permitting Ca2+influx or by providing depolarizing influences that gate voltage dependent Ca2+channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawai F, Horiguchi M, Suzuki H et al. Na+ Action Potentials in Human Photoreceptors. Neuron 2001; 30:451–458.

    Article  PubMed  CAS  Google Scholar 

  2. Dowling JE. The Retina: An approachable part of the brain. Cambridge: Belknapp Press, 1987.

    Google Scholar 

  3. Attwell D. The photoreceptor output synapse. Progress in Retinal Research 1990; 9:337–362.

    Article  CAS  Google Scholar 

  4. Baylor DA, Fuortes MGF, O’Bryan PM. Receptive fields of cones in the retina of the turtle. J Physiol 1971; 214:265–294.

    PubMed  CAS  Google Scholar 

  5. Rieke F, Schwartz EA. A cGMP-gated current can control exocytosis at cone synapses. Neuron 1994; 13:863–873.

    Article  PubMed  CAS  Google Scholar 

  6. Copenhagen DR, Jahr CE. Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 1989; 341:536–539.

    Article  PubMed  CAS  Google Scholar 

  7. Schmitz Y, Witkovsky P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive Ca2+channel. Neurosci 1997; 78:1209–16.

    Article  CAS  Google Scholar 

  8. Nawy S. The metabotropic receptor mGluR6 may signal through G(o), but not phosphodiesterase, in retinal bipolar cells. J Neurosci 1999; 19:2938–2944.

    PubMed  CAS  Google Scholar 

  9. Attwell D, Borges S, Wu S et al. Signal clipping by the rod output synapse. Nature 1987; 328:522–524.

    Article  PubMed  CAS  Google Scholar 

  10. Barnes S, Merchant V, Mahmud F. Modulation of transmission gain by protons at the photoreceptor output synapse. Proceedings of the National Academy of Science (U.S.A.) 1993; 90:10081–10085.

    Article  CAS  Google Scholar 

  11. Savchenko A, Barnes S, Kramer RH. Cyclic nucleotide-gated channels in synaptic terminals mediate feedback modulation by nitric oxide. Nature 1997; 390:694–698.

    PubMed  CAS  Google Scholar 

  12. Hare WA, Owen WG. Similar effects of carbachol and dopamine on neurons in the distal retina of the tiger salamander. Vis Neurosci 1995; 12: 443–455.

    Article  PubMed  CAS  Google Scholar 

  13. Bader CR, Bertrand D, Schwartz EA. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol 1982; 331:253–284.

    PubMed  CAS  Google Scholar 

  14. Corey DP, Dubinsky JM, Schwartz EA The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J Physiol 1984; 354:557–575.

    PubMed  CAS  Google Scholar 

  15. Maricq, AV, Korenbrot JI. Calcium and calcium-dependant chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1988; 1:503–515.

    Article  PubMed  CAS  Google Scholar 

  16. Barnes S, Hille B. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J Gen Physiol 1989; 94:719–743.

    Article  PubMed  CAS  Google Scholar 

  17. Lasater EM, Witkovsky P. The calcium current of turtle cone photoreceptor axon terminals. Neuroscience Research Supplement 1991; 15:S165–S173.

    PubMed  CAS  Google Scholar 

  18. Yagi T, Macleish PR. Ionic conductances of monkey solitary cone inner segments. J Neurophysiol 1994; 71:656–65.

    PubMed  CAS  Google Scholar 

  19. Wilkinson MF, Barnes S. The dihydropyridine-sensitive Ca2+channel subtype in cone photoreceptors. J Gen Physiol 1996; 107:621–630.

    Article  PubMed  CAS  Google Scholar 

  20. Taylor WR, Morgans C. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 1998; 15:541–52.

    Article  PubMed  CAS  Google Scholar 

  21. Kourennyi DK, Barnes S. Depolarization-induced calcium channel facilitation in rod photoreceptors is independent of G-proteins and phosphorylation. J Neurophysiol 2000; 84:133–138.

    PubMed  CAS  Google Scholar 

  22. Williams ME, Feldman, DH, McCue AF et al. Structure and functional expression of alphal, alpha2, and beta subunits of a novel human neuronal calcium channel. Neuron 1992; 8:71–84.

    Article  PubMed  CAS  Google Scholar 

  23. Bech-Hansen NT, Naylor MJ, Maybaum TA et al. Loss-of-function mutations in a calcium-channel alphal-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19:264–7

    Article  PubMed  CAS  Google Scholar 

  24. Strom TM, Nyakatura G, Apfelstedt-Sylla E et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19:260–263.

    Article  PubMed  CAS  Google Scholar 

  25. Morgans CW. Localization of the alpha(1F) Calcium channel subunit in the rat retina. Invest Ophth Vis Sci 2001; 42:2414–2418.

    CAS  Google Scholar 

  26. Morgans CW. Calcium channel heterogeneity among cone photoreceptors in the tree shrew retina. Eur J Neurosci 2000; 11:2989–2993.

    Article  Google Scholar 

  27. Nachman-Clewner M, St. Jules R, Townes-Anderson E. L-type calcium channels in the photoreceptor ribbon synapse: Localization and role in plasticity. J Comp Neurol 1999; 415:1–16.

    CAS  Google Scholar 

  28. Barnes S. Modulation of vertebrate retinal function by pH. In: K Kaila, BR Ransom, eds. pH and Brain Function. New York: John Wiley & Sons Inc., 1998.

    Google Scholar 

  29. Harsanyi K, Mangel SC. Modulation of cone to horizontal cell transmission by calcium and pH in the fish retina. Vis Neurosci 1993; 10:81–91.

    Article  PubMed  CAS  Google Scholar 

  30. DeVries SH. Exocytosed protons feedback to suppress the Ca2+current in mammalian cone photoreceptors. Neuron 2001; 32:1107–1117.

    Article  PubMed  CAS  Google Scholar 

  31. Piccolino M, Byzov AL, Kurenny DE et al. Low-calcium-induced enhancement of chemical synaptic transmission from photoreceptors to horizontal cells in the vertebrate retina. Proceedings of the National Academy of Science (USA) 1996; 93:2302–2306.

    Article  CAS  Google Scholar 

  32. Piccolino M, Vellani V, Rakotobe LA et al. Manipulation of synaptic sign and strength with divalent cations in the vertebrate retina: Pushing the limits of tonic, chemical neurotransmission. Eur J Neurosci 1999; 11:1–5.

    Article  Google Scholar 

  33. Baldridge WK, Kurennyi DK, Barnes S. Calcium-sensitive calcium influx in photoreceptor inner segments. J Neurophysiol 1998; 79:3012–3018.

    PubMed  CAS  Google Scholar 

  34. Thoreson WB, Nitzan R, Miller RF. Reducing extracellular Cl-suppresses dihydropyridine-sensitive Ca2+ currents and synaptic transmission in amphibian photoreceptors. J Neurophysiol 1997; 77:2175–90.

    PubMed  CAS  Google Scholar 

  35. Thoreson WB, Stella SL. Anion modulation of calcium current voltage dependence and amplitude in salamander rods. Biochem Biophys Acta 2000; 1464:142–50.

    Article  PubMed  CAS  Google Scholar 

  36. Byzov AL, Shura-Bura TM. Electric feedback mechanism in the processing of signals in the outer plexiform layer of the retina. Brain Res 1986; 26:33–44.

    Article  CAS  Google Scholar 

  37. Watanabe S, Matthews G. Regional distribution of cGMP-activation ion channels in plasma membrane of rod photoreceptors. J Neurosci 1988; 8:2334–2337.

    PubMed  CAS  Google Scholar 

  38. Werblin FS, Dowling JE. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969; 32:339–355.

    PubMed  CAS  Google Scholar 

  39. Cook PB, McReynolds JS. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nature Neurosci 1998; 1:711–719.

    Article  Google Scholar 

  40. Kaneko A, Shimazaki H. Synaptic transmission from photoreceptors to bipolar and horizontal cells in the carp retina. Cold Spring Harbor Symp Quant Biol 1976; 40:537–546.

    Article  PubMed  CAS  Google Scholar 

  41. Burkhardt DA. Synaptic feedback, depolarization, and color opponency in cone photoreceptors. Vis Neurosci 1993; 10:981–9.

    Article  PubMed  CAS  Google Scholar 

  42. Lam DMK. Biosynthesis of gamma-aminobutyric acid by isolated axons of cone horizontal cells in the goldfish retina. Nature 1975; 254:345–347.

    Article  PubMed  CAS  Google Scholar 

  43. Murakami M, Shimoda Y, Nakatani K et al. GABA-mediated negative feedback from horizontal cells to cones in carp retina. Jap J Physiol 1982; 32:911–926.

    Article  CAS  Google Scholar 

  44. Kaneko A, Tachibana M. Effects of gamma-butyric acid on isolated cone photoreceptors of the turtle retina. J Physiol 1986; 373:443–461.

    PubMed  CAS  Google Scholar 

  45. Wu SM. Effects of gamma-butyric acid on cones and bipolar cells of the tiger salamander retina. Brain Res 1986; 365:70–77.

    Article  PubMed  CAS  Google Scholar 

  46. Skrzypek J, Werblin F. Lateral interactions in the absence of feedback to cones. J Neurophysiol 1983; 49:1007–1017.

    PubMed  CAS  Google Scholar 

  47. O’Bryan PM. Properties of the depolarizing synaptic potential evoked by peripheral illumination in cones of the turtle retina. J Physiol 1973; 235:207–223.

    PubMed  Google Scholar 

  48. Lasansky A. Synaptic action mediating cone responses to annular illumination in the retina of the larval tiger salamander. J Physiol 1981; 310:205–14.

    PubMed  CAS  Google Scholar 

  49. Piccolino M, Gerschenfeld HM. Activation of a regenerative calcium conductance in turtle cones by peripheral stimulation. Proc R Soc London B 1978; 201:309–315.

    Article  CAS  Google Scholar 

  50. Thoreson WB, Burkhardt DA. Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination. Vis Neurosci 1990 5:571–83.

    Article  PubMed  CAS  Google Scholar 

  51. Snyder SH. Nitric oxide and neurons. Curr Opin Neurobiol 1992; 2:323–327.

    Article  PubMed  CAS  Google Scholar 

  52. Kelly MEM, Barnes S. Physiology and pathophysiology of nitric oxide in the retina. The Neuroscientist 1997; 3:357–360.

    Article  CAS  Google Scholar 

  53. Peretz MTR, Larsson B, Alm P et al. Localisation of neuronal nitric oxide synthaseimmunoreactivity in rat and rabbit reitnas. Exp Brain Res 1995; 104:207–217.

    Google Scholar 

  54. Yamamoto R, Bredt DS, Snyder SH et al. The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 1993; 54:189–200.

    Article  PubMed  CAS  Google Scholar 

  55. Liepe BA, Stone C, Koistanaho J et al. Nitric oxide synthase in Muller cells and neurons of salamander and fish retina. J Neurosci 1994; 14:7641–7654

    PubMed  CAS  Google Scholar 

  56. Blute TA, Mayer B, Eldred WD. Immunocytochemical and histochemical localization of nitric oxide synthase in the turtle retina. Vis Neurosci 1997; 14:717–729.

    Article  PubMed  CAS  Google Scholar 

  57. Kurenny DE, Moroz LL, Turner RW et al. Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron 1994; 13:315–324.

    Article  PubMed  CAS  Google Scholar 

  58. Kurennyi DE, Baldridge W, Hart J et al. Differential action of the nitric oxide donor S-nitrosocysteine on calcium channels in cone versus rod photoreceptors. Soc Neurosci Abstr 1997; 23:449.

    Google Scholar 

  59. Morgan IG, Boelen MK. A retinal light-dark switch: a review of the evidence. Vis Neurosci 1996; 13:399–409.

    Article  PubMed  CAS  Google Scholar 

  60. Djamgoz MB, Hankins MW, Hirano J et al. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vis Res 1997; 37:3509–3529.

    Article  PubMed  CAS  Google Scholar 

  61. Krizaj D, Witkovsky P. Effects of submicromolar concentrations of dopamine on photoreceptor to horizontal cell communication. Brain Res 1993; 627:122–128.

    Article  PubMed  CAS  Google Scholar 

  62. Akopian A, Witkovsky P. D2-dopamine receptor mediated inhibition of a hyperpolarization-activated current in rod photoreceptors. J Neurophysiol 1996; 76:1828–1835.

    PubMed  CAS  Google Scholar 

  63. Barnes S. After transduction: Response shaping and control of transmission by ion channels of the photoreceptor inner segment. Neuroscience 1994; 58:447–459.

    Article  PubMed  CAS  Google Scholar 

  64. Stella SL, Thoreson WB. Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP. Eur J Neurosci 2000; 12:3537–48.

    Article  PubMed  Google Scholar 

  65. Koulen P, Kuhn R, Wassle H et al. Modulation of the intracellular calcium concentration in photoreceptor terminals by a presynaptic metabotropic glutamate receptor. PNAS 1996; 96:9909–9914

    Article  Google Scholar 

  66. Kamermans M, Fahrenfort I, Schultz K et al. Hemichannel-mediated inhibition in the outer retina. Science 2001; 292:1178–1180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barnes, S., Kelly, M.E.M. (2002). Calcium Channels at the Photoreceptor Synapse. In: Baehr, W., Palczewski, K. (eds) Photoreceptors and Calcium. Advances in Experimental Medicine and Biology, vol 514. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0121-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0121-3_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4933-4

  • Online ISBN: 978-1-4615-0121-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics