Skip to main content

An MRI-Based Probabilistic Atlas of Neuroanatomy

  • Chapter
Magnetic Resonance Scanning and Epilepsy

Part of the book series: NATO ASI Series ((NSSA,volume 264))

Abstract

Three-dimensional MRI imaging techniques offer new possibilities for qualitative and quantitative studies of gross neuroanatomy, functional neuroanatomy and for neurosurgical planning. The digital nature of the data allows for the reconstruction of realistic three-dimensional models of an individual brain which can be sliced at arbitrary orientations for optimal visual inspection of often complex neuroanatomy and pathology. This is particularly relevant in the assessment of potential neuroanatomical correlates of temporal lobe epilepsy. Re-formatting of contiguous thinly sliced (1–2 mm thick) volumetric MRI data along planes parallel and perpendicular to the temporal plane allow finer visual discrimination and greater standardisation in qualitative procedures than previously possible. Perhaps more exciting are the applications of quantitative analysis where, for instance, accurate measurements of hippocampus and/or amygdala volumes provide important indicators of unilateral mesial temporal sclerosis which compare favourably with EEG and more invasive methods of lateralising the epileptogenic focus (Jack et al., 1990; Cascino et al., 1991; Watson et al, 1992; Cendes et al., 1993 a,b). For instance, by combining volumetric measurements of both hippocampus and amygdala, Cendes et al., (Chapter 9) quote correct lateralisation of focus in 93 of 100 temporal lobe epilepsy cases. The study of epilepsy arising from cortical abnormalities has been limited in the past by the difficulties of visualising the cortical surface from a set of conventional two-dimensional MRI slices. New acquisition techniques with gradient echo as opposed to spin echo techniques allow for an improved signal-to-noise ratio in thin slices in times compatible with clinical examinations. Whole brain coverage with thin slice data is now possible, such that partial volume effects are minimised with consequent improvements in fine detail. Numerous authors have reported dramatic improvements in the assessment of cortical dysplasia and grey matter heterotopias, particularly for more subtle abnormalities (Palmini et al., 1991a,b,c; Barkovich and Kjos, 1992a,b,c). The impact of this improved raw data when combined with new techniques for generating three-dimensional surface renderings in reasonably interactive circumstances is yet to be fully realised but initial experience is promising. At present, most studies have relied upon visual inspection to identify abnormalities in gyration on three-dimensional surface-rendered MRI. Such methods are quite acceptable for gross pathologies but, in a manner similar to mesial temporal volumetrics, the identification of more subtle distortions may require quantitative analysis of left/right differences and comparison of individual gyral surface area or gyral/sulcal locations with previously established population norms. Cook et al., (Chapter 47) have approached the problem by application of fractal analysis to two-dimensional MRI images from normal and frontal lobe epilepsy (FLE) patients. The grey-white matter interface was extracted by image processing procedures as a continuous contour and the fractal dimension, an index of contour complexity, derived. Results indicate that 10 of 16 FLE patients had a fractal index more than 3 standard deviations (3SD) below normal. In its present form, the method provides a non-specific indicator of cortical abnormality, yielding an overall index of complexity rather than identifying specific abnormalities, and is implemented in two dimensions rather than three dimensions. Nevertheless, it illustrates the potential of quantitative analysis for detecting aberrant cortical morphology. For a more directed analysis of cortical folding, a model of normal neuroanatomical variability, expressed in three-dimensional coordinates, is necessary. Keyserlingk and co-workers have developed methods for digitising sulcal patterns from post-mortem brains and constructed a map, with cuboid elements of 4 mm or 8 mm edge length, of major sulcal anatomy from 30 such brains (Keyserlingk et al., 1983, 1985, 1988; Niemann et al, 1988). The advent of high resolution MRI scanning offers finer spatial and contrast resolution in normal brain in vivo. At the Montreal Neurological Institute, MRI and PET imaging techniques are combined with three-dimensional graphics and computational analysis in the study of functional neuroanatomy of cognitive and sensorimotor processing. As part of this “brain mapping” programme, we have collected a database of over 300 MRI volumes from young normal subjects and are presently engaged in a series of projects whose long-term goal is the construction of a probabilistic description of normal neuroanatomy derived from high-resolution (1 mm thick slices) MRI data. In this chapter we briefly describe the current brain mapping environment at our institute and the current development of the MRI atlas project in both volumetric and surface domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkovich, A. J., and Kjos, B. O., 1992a, Gray matter heterotopias: MR characteristics and correlation with developmental and neurological manifestations, Radiology 182: 493–499.

    PubMed  CAS  Google Scholar 

  • Barkovich, A. J., and Kjos, B. O., 1992b, Non-lissencephalic cortical dysplasia: Correlation of imaging findings with clinical deficits, AJNR 13: 95–103.

    PubMed  CAS  Google Scholar 

  • Barkovich, A. J., and Kjos, B. O., 1992c, Schizencephaly: Correlation of clinical findings with MR characteristics, Radiology 182: 493–499.

    PubMed  CAS  Google Scholar 

  • Bookstein, F., 1989, Principal warps: Thin-plate splines and the decomposition of deformations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11: 567–585.

    Article  Google Scholar 

  • Carman, G. J., 1990, Mapping of the cerebral cortex, PhD Thesis: Caltech.

    Google Scholar 

  • Cascino, G. D., Jack, C. R. Jr, Parisi, J. E., Sharbrough, F. W., Hirschorn, K. A., Meyer, F. B., Marsh, W. R., and O’Brien, P. C., 1991, Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations, Ann Neurol. 30: 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Cendes, F., Andermann, F., Gloor, P., Evans, A. C., Jones-Gotman, M., Watson, C., Melancon, D., Olivier, A., Peters, T., Lopes-Cendes, I., and Leroux, G., 1993a, Volumetric measurements of amygdala and hippocampal formation in temporal lobe epilepsy, Neurology in press.

    Google Scholar 

  • Cendes, F., Andermann, F., Dubeau, F., Gloor, P., Evans, A. C., Jones-Gotman, M., Olivier, A., Andermann, E., Robitaille, Y., and Meiancon, D., 1993b, Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures in temporal lobe epilepsy: An MRI volumetric study, Neurology 43: 1083–1087.

    Article  PubMed  CAS  Google Scholar 

  • Chang, Chui, H., and Damasio, A. R., 1980, Human cerebral asymmetries evaluated by computed tomography, J Neurochem Neurosurg Psychiat. 43: 873–878.

    Article  Google Scholar 

  • Collins, D. L., Dai, W., Peters, T. M., and Evans, A. C., 1992a, Model-based segmentation of individual brain structures from MRI data visualisation in Biomedical Computing, Proceedings of the International Society of Optical Engineering (SPIE), 1808: 10–23.

    Google Scholar 

  • Collins, D. L., Peters, T. M., and Evans, A. C., 1992b, Non-linear multi-scale image registration and segmentation of individual brain structures from MRI, Proceedings of IEEE Symposium on Advanced Medical Image Processing in Medicine: 105–110.

    Google Scholar 

  • Drevits, W. C., Videen, T. O., MacLeod, A. K., Haller, J. W., and Raichle, M. E., 1988, PET images of blood flow changes during anxiety: Correction, Science 256: 1696.

    Article  Google Scholar 

  • Evans, A. C., Marrett, S., Collins, D. L., and Peters, T. M., 1989, Anatomical-functional correlative analysis of the human brainusing three-dimensional imaging systems, Medical, Imaging III: 264–274.

    Google Scholar 

  • Evans, A. C., Marrett, S., Torrescorzo, J., Ku, S., and Collins, L., 1991a, MRI-PET correlative analysis using a volume of interest (VOI) atlas, J Cereb Blood Flow Metabol. 11: A69–A78.

    Article  CAS  Google Scholar 

  • Evans, A. C., Dai, W., Collins, L., Neelin, P., and Marrett, S., 1991b, Warping of a computerised three-dimensional atlas to match brain image volumes for quantitative neuroanatomical and functional analysis, Proceedings of the International Society of Optical Engineering (SPIE): Medical Imaging V 1445: 236–247.

    Article  Google Scholar 

  • Evans, A. C., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., Milot, S., Meyer, E., and Bub, D., 1992a, Anatomical mapping of functional activation in stereotacticcoordinate space, NeuroImage 1: 43–63.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. C., Collins, D. L., Milner, B., 1992b, An MRI-based stereotactic brain atlas from 300 young normal subjects, “Proceedings of the 22nd Annual Symposium, Society for Neuroscience,” Arnheim 1794: 408.

    Google Scholar 

  • Galaburda, A. M., LeMay, M., Kemper, T. L., and Geschwind, N., 1978, Right-left asymmetries in the brain. Structural differences between the hemispheres may underlie cerebral dominance, Science 199: 852–856.

    Article  PubMed  CAS  Google Scholar 

  • Geschwind, N., and Levitsky, W., 1968, Human brain: left-right asymmetries in temporal speech regions, Science 161: 181–187.

    Article  Google Scholar 

  • Jack, C. R. Jr, Sharbrough, F. W., Twomey, C. K., Cascino, G. D., Hirschorn, K. A., Marsh, W. R., Zinsmeister, A. R., and Scheithauer, B., 1990, Temporal lobe seizures: lateralisation with MR volume measurements of the hippocampal formation, Radiology 175: 423–429.

    PubMed  Google Scholar 

  • Jack, C. R. Jr, Sharbrough, F. W., Cascino, G. D., Hirschorn, K. A., O’Brien, P. C., and Marsh, W. R. 1992, Magnetic resonance image-based hippocampal volumetry: correlation with outcome after temporal lobectomy, Ann Neurol, 31: 138–146.

    Article  PubMed  Google Scholar 

  • Jouandet, M. L., Tramo, M. J., Herron, D. M., Hermann, A., Lostus, W. C., Bazell, J., and Gazzaniga, M. S., 1989, Computer-generated two-dimensional maps of the human cerebral cortex in vivo, J Cognit Neurosci. 1: 88–117.

    Article  Google Scholar 

  • Kamber, M., Collins, D. L., Francis, G. S., Shinghal, R., and Evans, A. C., 1992, Model-based three-dimensional segmentation of multiple sclerosis lesions in MRI data Visualisation in Biomedical Computing, Proceedings of the International Society of Optical Engineering (SPIE): 1808: 590–600.

    Google Scholar 

  • Keyserlingk, D. Gv., De Bleser, R., and Poeck, K., 1983, Stereographic reconstruction of human brain CT series, Acta Anat. 123: 240–246.

    Article  Google Scholar 

  • Keyserlingk, D. Gv., Niemann, K., Wasel, J., Reinold, J., and Poeck, K., 1985, A new method in computer-assisted imaging in neuroanatomy, Acta Anat. 123: 240–246.

    Article  Google Scholar 

  • Keyserlingk, D. Gv., Niemann, K., and Wasel, J., 1988, A quantitative approach to spatial variation on human cerebral sulci, Acta Anat. 131: 127–131.

    Article  Google Scholar 

  • Le May, M. and Kido, D. K., 1978, Asymmetries of the cerebral hemispheres on computed tomograms, J Comput Assist Tomogr. 2: 471–476.

    Article  CAS  Google Scholar 

  • Lemoine, D., Barillot, C., Gibaud, B., and Pasqualini, E., 1991, An anatomical-based three-dimensional registration system of multimodalityand atlas data in neurosurgery, Lecture Notes in Computer Science 511: Information Processing in Medical Imaging, Colchester A. C. F. and Hawkes D. J.: eds, Springer-Verlag, Heidelberg, pp 154–164.

    Google Scholar 

  • MacDonald, D., Avis, D., and Evans, A. C., 1993, Automatic parameterisation of human cortical surfaces, “Proceedings of the Annual Symposium on Information Processing in Medical Imaging (IPMI)”, in press.

    Google Scholar 

  • Niemann, K., Keyserlingk, D. Gv., and Wasel, J., 1988, Superposition of an averaged three-dimensional pattern of brainstructures on CT scans, Acta Neurochir. (Wien) 93: 61–67.

    Article  CAS  Google Scholar 

  • Palmini, A., Andermann, F. et al., 1991a, Diffuse cortical dysplasia, or the “double cortex” syndrome: the clinical and epileptic spectrum in 10 patients, Neurology 41: 1656–1662.

    Article  PubMed  CAS  Google Scholar 

  • Palmini, A., Andermann, F. et al., 1991b, Focal neuronal migration disorders and intractable partial epilepsy: a study of 30 patients, Ann Neurol. 30: 741–749.

    Article  PubMed  CAS  Google Scholar 

  • Palmini, A., Andermann, F. et al., 1991c, Focal neuronal migration disorders and intractable partial epilepsy: results of surgical treatment, Ann Neurol. 30: 750–757.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, J. R., 1986, Induction of decision trees, Machine Learning 1: 81–106.

    Google Scholar 

  • Rubens, A. B., Mahowald, U. W., and Hutton, J. T., 1976, Asymmetry of the lateral (sylvian) fissures in man, Neurology 26: 620–624.

    Article  PubMed  CAS  Google Scholar 

  • Sereno, M. I., and Dale, A. M., 1992, A technique for reconstructing and flattening the cortical surface using MRI images, Society for Neuroscience Abstracts 18: 585.

    Google Scholar 

  • Talairach, J. and Tournoux, P., 1988, Co-planar stereotactic atlas of the human brain: three-dimensionalimensional proportional system: an approach to cerebral imaging, Georg Thieme Verlag, Stuttgart, New York.

    Google Scholar 

  • Talairach, J., Szikla, G., Tournoux, P., Prossalentis, A., Bordas-Ferrer, M., Covello, L., Jacob, M., Mempel, A., Buser, P., and Bancaud, J., 1967, “Atlas d’anatomie stereotaxique du telencephale,” Masson, Paris.

    Google Scholar 

  • Van Essen, D. C., and Maunsell, J. H. R., 1980, Two-dimensional maps of the cerebral cortex, J Comparative Neurol. 191: 255–281.

    Article  Google Scholar 

  • Watson, C., Andermann, F., Gloor, P., Jones-Gotman, M., Peters, T., Evans, A., Olivier, A., Melanson, D., and Leroux G., 1992, Anatomical basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging, Neurology 42: 1743–1750.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger, D. R., Luchins, P., Morihisa, J., and Wyatt, R. J., 1982, Asymmetrical volumes of the right and left frontal and occipital regions of the human brain, Neurology 11: 97–102.

    CAS  Google Scholar 

  • Witelson, S. F., 1977, Anatomical asymmetry in the temporal lobes: its documentation, phylogenesis and relationship to functional asymmetry, Ann NY Acad Sci. 299: 328–354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evans, A.C., Kamber, M., Collins, D.L., MacDonald, D. (1994). An MRI-Based Probabilistic Atlas of Neuroanatomy. In: Shorvon, S.D., Fish, D.R., Andermann, F., Bydder, G.M., Stefan, H. (eds) Magnetic Resonance Scanning and Epilepsy. NATO ASI Series, vol 264. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2546-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2546-2_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6086-5

  • Online ISBN: 978-1-4615-2546-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics