Skip to main content

Constructing Synthetic Microbial Communities to Explore the Ecology and Evolution of Symbiosis

  • Protocol
  • First Online:
Engineering and Analyzing Multicellular Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1151))

Abstract

Synthetically engineered microbial communities based on model organisms provide a simplified model of their naturally occurring counterparts while still retaining essential features of living organisms. The degree of control afforded by this approach has been critical in understanding how similar types of natural communities might have persisted and evolved. Here, we first discuss important considerations when designing a synthetically engineered system. Then, we describe the steps required to create a two-partner cooperative system based on the yeast Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464. doi:10.1016/j.copbio.2011.01.008

    Article  CAS  Google Scholar 

  2. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270. doi:10.1016/j.cell.2012.01.035

    Article  CAS  Google Scholar 

  3. Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65. doi:10.4248/IJOS11026

    Article  Google Scholar 

  4. Zengler K (2009) Central role of the cell in microbial ecology. Microbiol Mol Biol Rev 73:712–729. doi:10.1128/MMBR.00027-09

    Article  CAS  Google Scholar 

  5. Momeni B, Chen C-C, Hillesland K et al (2011) Using artificial systems to explore the ecology and evolution of symbioses. Cell Mol Life Sci 68:1353–1368. doi:10.1007/s00018-011-0649-y

    Article  CAS  Google Scholar 

  6. Hagen DC, McCaffrey G, Sprague GF (1986) Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci 83:1418–1422

    Article  CAS  Google Scholar 

  7. SGD project Saccharomyces Genome Database. In: SGD. http://yeastgenome.org/cache/genomeSnapshot.html. Accessed 8 Mar 2010

  8. Dimitrov LN, Brem RB, Kruglyak L, Gottschling DE (2009) Polymorphisms in multiple genes contribute to the spontaneous mitochondrial genome instability of Saccharomyces cerevisiae S288C Strains. Genetics 183:365–383. doi:10.1534/genetics.109.104497

    Article  CAS  Google Scholar 

  9. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137:1247–1258. doi:10.1016/j.cell.2009.04.014

    Article  Google Scholar 

  10. Yvert G, Brem RB, Whittle J et al (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35:57–64. doi:10.1038/ng1222

    Article  CAS  Google Scholar 

  11. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in <I>Saccharomyces cerevisiae</I> Yeast 15:1541–1553. doi:10.1002/(SICI)1097-0061(199910) 15:14<1541 ::AID-YEA476>3.0.CO;2-K

    Article  CAS  Google Scholar 

  12. Nakazawa N, Iwano K (2004) Efficient selection of hybrids by protoplast fusion using drug resistance markers and reporter genes in Saccharomyces cerevisiae. J Biosci Bioeng 98:353–358. doi:10.1016/S1389-1723(04)00295-6

    Article  CAS  Google Scholar 

  13. Hentges P, Van Driessche B, Tafforeau L et al (2005) Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22:1013–1019. doi:10.1002/yea.1291

    Article  CAS  Google Scholar 

  14. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887. doi:10.1039/b901966a

    Article  CAS  Google Scholar 

  15. Sample V, Newman RH, Zhang J (2009) The structure and function of fluorescent proteins. Chem Soc Rev 38:2852. doi:10.1039/b913033k

    Article  CAS  Google Scholar 

  16. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670. doi:10.1002/yea.1130

    Article  CAS  Google Scholar 

  17. Güldener U, Heck S, Fiedler T et al (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524. doi:10.1093/nar/24.13.2519

    Article  Google Scholar 

  18. Güeldener U, Heinisch J, Koehler GJ et al (2002) A second set of loxP marker cassettes for cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23–e23. doi:10.1093/nar/30.6.e23

    Article  Google Scholar 

  19. Guthrie C, Fink GR (2002) Guide to yeast genetics and molecular and cell biology, part B, vol 350, 1st edn. Academic, New York

    Google Scholar 

  20. Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175

    Article  CAS  Google Scholar 

  21. Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci U S A 104:1877–1882. doi:10.1073/pnas.0610575104

    Article  CAS  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  23. Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50:325–328. doi:10.2144/000113672

    Google Scholar 

Download references

Acknowledgements

Work in the W.S. group is supported by the W. M. Keck Foundation and the National Institutes of Health (Grant 1 DP2OD006498-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Shou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Waite, A.J., Shou, W. (2014). Constructing Synthetic Microbial Communities to Explore the Ecology and Evolution of Symbiosis. In: Sun, L., Shou, W. (eds) Engineering and Analyzing Multicellular Systems. Methods in Molecular Biology, vol 1151. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0554-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0554-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0553-9

  • Online ISBN: 978-1-4939-0554-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics