Skip to main content

A Highly Reproducible Mouse Model of Compression Spinal Cord Injury

  • Protocol
  • First Online:
Axon Growth and Regeneration

Abstract

Experimental spinal cord injury (SCI) can maintain the continuity of the spinal cord, as in the contusion (e.g., weight-fall) or compression models, or not, when there is a partial or a complete transection. The majority of acute human SCI is not followed by complete transection, but there is a combination of contusion, compression, and possibly partial transection. The method described here is a compressive mouse model that presents a combination of contusion and compression components and has many facilities in its execution. This lesion was established by our group and represents a simple, reliable, and inexpensive clip compression model with functional and morphological reproducibility. In this chapter we describe, step by step, the protocol of this experimental SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Statistical Center (NSCIS). Spinal cord injury facts and figures at a glance. https://www.nscisc.uab.edu/PublicDocuments/nscisc_home/pdf/Facts%202011%20Feb%20Final.pdf. Accessed Feb 2011

  2. Andres RH, Meyer M, Ducray AD et al (2008) Restorative neuroscience: concepts and perspectives. Swiss Med Wkly 138:155–172

    PubMed  Google Scholar 

  3. Eftekhar E, Karimi-Abdolrezaee S, Fehlings MG (2008) Current status of experimental cell replacement approaches to spinal cord injury. Neurosurg Focus 24:E18

    Google Scholar 

  4. Vawda R, Fehlings MG (2013) Mesenchymal cells in the treatment of spinal cord injury: current & future perspectives. Curr Stem Cell Res Ther 8:25–38

    Article  CAS  PubMed  Google Scholar 

  5. Cizkova D, Novotna I, Slovinska L et al (2011) Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. J Neurotrauma 28(9): 1951–1961

    Article  PubMed  Google Scholar 

  6. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S et al (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28(8):1611–1682

    Article  PubMed Central  PubMed  Google Scholar 

  7. Zhou Z, Chen Y, Zhang H et al (2013) Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 15(4):434–482

    Article  CAS  PubMed  Google Scholar 

  8. Martin D, Robe P, Franzen R et al (1996) Effects of Schwann cell transplantation in a contusion model of rat spinal cord injury. J Neurosci Res 45:588–597

    Article  CAS  PubMed  Google Scholar 

  9. Cizkova D, Rosocha J, Vanicky I et al (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26: 1167–1180

    Article  PubMed  Google Scholar 

  10. Boyd JG, Lee J, Skihar V et al (2004) LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord. Proc Natl Acad Sci U S A 101:2162–2166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Firouzi M, Moshayedi P, Saberi H et al (2006) Transplantation of Schwann cells to subarachnoid space induces repair in contused rat spinal cord. Neurosci Lett 402:66–70

    Article  CAS  PubMed  Google Scholar 

  12. Marques SA, Garcez VF, Del Bel EA et al (2009) A simple, inexpensive and easily reproducible model of spinal cord injury in mice: Morphological and functional assessment. J Neurosci Methods 177:183–193

    Article  PubMed  Google Scholar 

  13. Marques SA, Almeida FM, Fernandes A et al (2010) Predifferentiated embryonic stem cells promote functional recovery after spinal cord compressive injury. Brain Res 1349: 115–128

    Article  CAS  PubMed  Google Scholar 

  14. Almeida FM, Marques SA, Ramalho BS et al (2011) Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury. J Neurotrauma 28: 1939–1949

    Article  PubMed  Google Scholar 

  15. Papastefanaki F, Chen P, Lavdas AA et al (2007) Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain 130: 2159–2174

    Article  PubMed  Google Scholar 

  16. Xu XM, Zhang SX, Li H et al (1999) Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 11:1723–1740

    Article  CAS  PubMed  Google Scholar 

  17. Hsu JY, Xu XM (2005) Early profiles of axonal growth and astroglial response after spinal cord hemisection and implantation of Schwann cell-seeded guidance channels in adult rats. J Neurosci Res 82:472–483

    Article  CAS  PubMed  Google Scholar 

  18. Guest JD, Herrera L, Margitich I et al (2008) Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection. Exp Neurol 212:261–274

    Article  CAS  PubMed  Google Scholar 

  19. Imaizumi T, Lankford KL, Kocsis JD (2000) Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Res 854:70–78

    Article  CAS  PubMed  Google Scholar 

  20. Vroemen M, Caioni M, Bogdahn U et al (2007) Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord. Cell Tissue Res 32:1–13

    Google Scholar 

  21. Hill CE, Hurtado A, Blits B et al (2007) Early necrosis and apoptosis of Schwann cells transplanted into the injured rat spinal cord. Eur J Neurosci 26:1433–1445

    Article  PubMed  Google Scholar 

  22. Pearse DD, Sanchez AR, Pereira FC et al (2007) Transplantation of Schwann cells and = or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery. Glia 55:976–1000

    Article  PubMed  Google Scholar 

  23. Schaal SM, Kitay BM, Cho KS et al (2007) Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion. Cell Transplant 16:207–228

    CAS  PubMed  Google Scholar 

  24. Pinzon A, Calancie B, Oudega M et al (2001) Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res 64: 533–541

    Article  CAS  PubMed  Google Scholar 

  25. Plant GW, Bates ML, Bunge MB (2001) Inhibitory proteoglycan immunoreactivity is higher at the caudal than the rostral Schwann cell graft-transected spinal cord interface. Mol Cell Neurosci 17:471–487

    Article  CAS  PubMed  Google Scholar 

  26. Vavrek R, Pearse DD, Fouad K (2007) Neuronal populations capable of regeneration following a combined treatment in rats with spinal cord transection. J Neurotrauma 24:1667–1673

    Article  PubMed  Google Scholar 

  27. Rivlin AS, Tator CH (1978) Effects of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10(1):38–43

    CAS  PubMed  Google Scholar 

  28. von Euler M, Seiger A, Sundstrom E (1997) Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations. Exp Neurol 145: 502–510

    Article  Google Scholar 

  29. Khan M, Griebel R (1983) Acute spinal cord injury in the rat: comparison of three experimental techniques. Can J Neurol Sci 10: 161–165

    CAS  PubMed  Google Scholar 

  30. Poon PC, Gupta D, Shoichet MS, Tator CH (2007) Clip compression model is useful for thoracic spinal cord injuries. Spine 32(25): 2853–2859

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Blanco Martinez M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marques, S.A., de Almeida, F.M., Mostacada, K., Martinez, A.M.B. (2014). A Highly Reproducible Mouse Model of Compression Spinal Cord Injury. In: Murray, A. (eds) Axon Growth and Regeneration. Methods in Molecular Biology, vol 1162. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0777-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0777-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0776-2

  • Online ISBN: 978-1-4939-0777-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics