Skip to main content

Mimotope-Based Prediction of B-Cell Epitopes

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

Mimotopes are peptides mimicking epitopes on the corresponding antigen. They can be obtained via panning the phage-displayed random peptide library against the corresponding monoclonal antibody or specific sera. Besides mimotopes however, the experimental results also include all kinds of unwanted sequences called “target-unrelated peptides,” which often interfere with the subsequent experimental and computational analyses. Nevertheless, the prediction of B-cell epitopes based on the experimental result of phage display has shown to be a promising and reliable strategy with acceptable precision. In this chapter, we summarize mimotope-based prediction of B-cell epitopes under three conditions and focus on protocols and tips for retrieving, cleaning, and decoding the data from phage display technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131(2):153–168. doi:10.1111/j.1365-2567.2010.03330.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Castelli M, Cappelletti F, Diotti RA, Sautto G, Criscuolo E, Dal Peraro M, Clementi N (2013) Peptide-based vaccinology: experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides. Clin Dev Immunol 2013:12. doi:10.1155/2013/521231

    Article  Google Scholar 

  3. Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14(1):246–248. doi:10.1110/ps.041059505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Huang J, Honda W, Kanehisa M (2007) Predicting B cell epitope residues with network topology based amino acid indices. Genome Inform Int Conf Genome Inform 19:40–49

    Article  CAS  Google Scholar 

  5. Huang J, Kawashima S, Kanehisa M (2007) New amino acid indices based on residue network topology. Genome Inform Int Conf Genome Inform 18:152–161

    Article  CAS  Google Scholar 

  6. Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7. doi:10.1186/1471-2172-7-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Geysen HM, Rodda SJ, Mason TJ (1986) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol 23(7):709–715

    Article  CAS  PubMed  Google Scholar 

  8. Huang J, Gutteridge A, Honda W, Kanehisa M (2006) MIMOX: a web tool for phage display based epitope mapping. BMC Bioinformatics 7:451

    Article  PubMed Central  PubMed  Google Scholar 

  9. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  PubMed  Google Scholar 

  10. Smothers JF, Henikoff S, Carter P (2002) Tech. sight. Phage display. Affinity selection from biological libraries. Science 298(5593):621–622. doi:10.1126/science.298.5593.621

    Article  CAS  PubMed  Google Scholar 

  11. Huang J, Ru B, Li S, Lin H, Guo FB (2010) SAROTUP: scanner and reporter of target-unrelated peptides. J Biomed Biotechnol 2010:101932. doi:10.1155/2010/101932

    PubMed Central  PubMed  Google Scholar 

  12. He B, Mao C, Ru B, Han H, Zhou P, Huang J (2013) Epitope mapping of Metuximab on CD147 using phage display and molecular docking. Comput Math Methods Med 2013:6. doi:10.1155/2013/983829

    Google Scholar 

  13. UniProt C (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41(Database issue):D43–D47. doi:10.1093/nar/gks1068

    Google Scholar 

  14. Huang J, Ru B, Zhu P, Nie F, Yang J, Wang X, Dai P, Lin H, Guo FB, Rao N (2012) MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 40(Database issue):D271–D277. doi:10.1093/nar/gkr922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ru B, ‘t Hoen PAC, Nie F, Lin H, Guo FB, Huang J (2014) PhD7Faster: predicting clones propagating faster from the Ph.D.-7 phage display peptide library. J Bioinform Comput Biol 12(1): 1450004. doi:10.1142/S021972001450005X

  16. Negi SS, Braun W (2009) Automated detection of conformational epitopes using phage display peptide sequences. Bioinform Biol Insights 3:71–81

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Mayrose I, Penn O, Erez E, Rubinstein ND, Shlomi T, Freund NT, Bublil EM, Ruppin E, Sharan R, Gershoni JM, Martz E, Pupko T (2007) Pepitope: epitope mapping from affinity-selected peptides. Bioinformatics 23(23):3244–3246

    Article  CAS  PubMed  Google Scholar 

  18. Chen W, Guo WW, Huang Y, Ma Z (2012) PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides. PLoS One 7(5):e37869. doi:10.1371/journal.pone.0037869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. doi:10.1093/bioinformatics/btp033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jonassen I (1997) Efficient discovery of conserved patterns using a pattern graph. Comput Appl Biosci CABIOS 13(5):509–522

    CAS  Google Scholar 

  21. de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(1):W362–W365. doi:10.1093/nar/gkl124

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4(1):1–13. doi:10.1038/nprot.2008.197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter was supported in part by the National Natural Science Foundation of China under Grant 61071177 and the Program for New Century Excellent Talents in University (NCET-12-0088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, J., He, B., Zhou, P. (2014). Mimotope-Based Prediction of B-Cell Epitopes. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics