Skip to main content

Hybrid Methods for B-Cell Epitope Prediction

Approaches to the Development and Utilization of Computational Tools for Practical Applications

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1184))

Abstract

Many computational approaches to B-cell epitope prediction have been published, including combinations of previously proposed methods, which complicates the tasks of further developing such computational approaches and of selecting those most appropriate for practical applications (e.g., the design of novel immunodiagnostics and vaccines). These tasks are considered together herein to clarify their close but often overlooked interrelationship, thereby providing a guide to their performance in mutual support of one another, with emphasis on key physicochemical and biological considerations that are relevant from an applications perspective. This aims to assist investigators in performing either or both tasks, with the overall goals of successfully applying computational tools towards practical ends and of generating informative new data towards iterative improvement of the tools, particularly as regards the design of peptide-based immunogens for eliciting the production of antipeptide antibodies that modulate biological activity of protein targets via functionally relevant cross-reactivity in relation to the phenomena of protein folding and protein disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Regenmortel MH (2009) What is a B-cell epitope? Methods Mol Biol 524:3–20

    Article  PubMed  Google Scholar 

  2. Caoili SE (2006) A structural-energetic basis for B-cell epitope prediction. Protein Pept Lett 13:743–751

    Article  CAS  PubMed  Google Scholar 

  3. Caoili SE (2010) Immunization with peptide-protein conjugates: impact on benchmarking B-cell epitope prediction for vaccine design. Protein Pept Lett 17:386–398

    Article  CAS  PubMed  Google Scholar 

  4. Motte P, Alberici G, Ait-Abdellah M, Bellet D (1987) Monoclonal antibodies distinguish synthetic peptides that differ in one chemical group. J Immunol 138:3332–3338

    CAS  PubMed  Google Scholar 

  5. Caoili SE (2012) On the meaning of affinity limits in B-cell epitope prediction for antipeptide antibody-mediated immunity. Adv Bioinformatics 2012:346765

    Article  PubMed Central  PubMed  Google Scholar 

  6. Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 92:1254–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. van Oss CJ (1997) Kinetics and energetics of specific intermolecular interactions. J Mol Recognit 10:203–216

    Article  PubMed  Google Scholar 

  8. Northrup SH, Erickson HP (1992) Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci USA 89:3338–3342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Raman CS, Jemmerson R, Nall BT, Allen MJ (1992) Diffusion-limited rates for monoclonal antibody binding to cytochrome c. Biochemistry 31:10370–10379

    Article  CAS  PubMed  Google Scholar 

  10. Watts C, Davidson HW (1988) Endocytosis and recycling of specific antigen by human B cell lines. EMBO J 7:1937–1945

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Foote J, Eisen HN (2000) Breaking the affinity ceiling for antibodies and T cell receptors. Proc Natl Acad Sci USA 97:10679–10681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ju ST, Nonogaki T, Bernatowicz MS, Matsueda GR (1993) The B cell immune response to an idiotype-inducing peptide epitope can be inhibited by immunodominance of a neighboring epitope. J Immunol 150:2641–2647

    CAS  PubMed  Google Scholar 

  13. Novotny J, Handschumacher M, Haber E et al (1986) Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc Natl Acad Sci USA 83:226–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sanders RW, Venturi M, Schiffner L et al (2002) The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 76:7293–7305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chothia C, Finkelstein AV (1990) The classification and origins of protein folding patterns. Annu Rev Biochem 59:1007–1039

    Article  CAS  PubMed  Google Scholar 

  16. Jones S, Thornton JM (1997) Prediction of protein-protein interaction sites using patch analysis. J Mol Biol 272:133–143

    Article  CAS  PubMed  Google Scholar 

  17. Murphy KP, Freire E (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 43:313–361

    Article  CAS  PubMed  Google Scholar 

  18. Edgcomb SP, Murphy KP (2000) Structural energetics of protein folding and binding. Curr Opin Biotechnol 11:62–66

    Article  CAS  PubMed  Google Scholar 

  19. Nakra P, Manivel V, Vishwakarma RA, Rao KV (2000) B cell responses to a peptide epitope. X. Epitope selection in a primary response is thermodynamically regulated. J Immunol 164:5615–5625

    CAS  Google Scholar 

  20. Francis T Jr (1960) On the doctrine of original antigenic sin. Proc Am Philos Soc 104:572–578

    Google Scholar 

  21. Morens DM, Burke DS, Halstead SB (2010) The wages of original antigenic sin. Emerg Infect Dis 16:1023–1024

    Article  PubMed Central  PubMed  Google Scholar 

  22. Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci USA 85:5409–5413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Posnett DN, Tam JP (1989) Multiple antigenic peptide method for producing antipeptide site-specific antibodies. Methods Enzymol 178:739–746

    Article  CAS  PubMed  Google Scholar 

  24. Bainbridge J, Jones N, Walker B (2004) Multiple antigenic peptides facilitate generation of anti-prion antibodies. Clin Exp Immunol 137:298–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wang HW, Lin YC, Pai TW, Chang HT (2011) Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification. J Biomed Biotechnol 2011:432830

    PubMed Central  PubMed  Google Scholar 

  26. Herbst-Kralovetz M, Mason HS, Chen Q (2010) Norwalk virus-like particles as vaccines. Expert Rev Vaccines 9:299–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tobin GJ, Trujillo JD, Bushnell RV et al (2008) Deceptive imprinting and immune refocusing in vaccine design. Vaccine 26:6189–6199

    Article  CAS  PubMed  Google Scholar 

  28. Caoili SE (2013) Antidotes, antibody-mediated immunity and the future of pharmaceutical product development. Hum Vaccin Immunother 9:294–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Laver WG, Air GM, Webster RG, Smith-Gill SJ (1990) Epitopes on protein antigens: misconceptions and realities. Cell 61:553–556

    Article  CAS  PubMed  Google Scholar 

  30. Schwab C, Bosshard HR (1992) Caveats for the use of surface-adsorbed protein antigen to test the specificity of antibodies. J Immunol Methods 147:125–134

    Article  CAS  PubMed  Google Scholar 

  31. Leder L, Wendt H, Schwab C et al (1994) Genuine and apparent cross-reaction of polyclonal antibodies to proteins and peptides. Eur J Biochem 219:73–81

    Article  CAS  PubMed  Google Scholar 

  32. Dunker AK, Oldfield CJ, Meng J et al (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9:S1

    Article  Google Scholar 

  33. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Caoili SE (2010) Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: problems and prospects. J Biomed Biotechnol 2010:910524

    Article  PubMed Central  PubMed  Google Scholar 

  36. Van Regenmortel MH (2006) Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit 19:183–187

    Article  PubMed  Google Scholar 

  37. Chen SW, Van Regenmortel MH, Pellequer JL (2009) Structure-activity relationships in peptide-antibody complexes: implications for epitope prediction and development of synthetic peptide vaccines. Curr Med Chem 16:953–964

    Article  PubMed  Google Scholar 

  38. Sollner J, Grohmann R, Rapberger R et al (2008) Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res 4:1

    Article  PubMed Central  PubMed  Google Scholar 

  39. Halstead SB, Mahalingam S, Marovich MA et al (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis 10:712–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lund O, Hansen J, Mosekilde E et al (1993) A model of enhancement and inhibition of HIV infection of monocytes by antibodies against HIV. J Biol Phys 19:133–145

    Article  CAS  Google Scholar 

  41. Beck Z, Prohaszka Z, Fust G (2008) Traitors of the immune system—enhancing antibodies in HIV infection: their possible implication in HIV vaccine development. Vaccine 26:3078–3085

    Article  CAS  PubMed  Google Scholar 

  42. Nelson S, Jost CA, Xu Q et al (2008) Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog 4:e1000060

    Article  PubMed Central  PubMed  Google Scholar 

  43. Cherrier MV, Kaufmann B, Nybakken GE et al (2009) Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody. EMBO J 28:3269–3276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hill AV (1910) The nature of oxyhaemoglobin, with a note on its molecular weight. J Physiol 40:4–7

    Google Scholar 

  45. Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11:835–841

    CAS  PubMed  Google Scholar 

  46. Bounias M (1989) Algebraic potential of the Hill equation as an alternative tool for plotting dose (or time)/effects relationships in toxicology: a theoretical study. Fundam Clin Pharmacol 3:1–9

    Article  CAS  PubMed  Google Scholar 

  47. Casadevall A, Pirofski LA (2012) A new synthesis for antibody-mediated immunity. Nat Immunol 13:21–28

    Article  CAS  Google Scholar 

  48. Caoili SE (2011) B-cell epitope prediction for peptide-based vaccine design: towards a paradigm of biological outcomes for global health. Immunome Res 7:2

    Google Scholar 

  49. Fedorov V, Mannino F, Zhang R (2009) Consequences of dichotomization. Pharm Stat 8:50–61

    Article  PubMed  Google Scholar 

  50. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656

    Article  Google Scholar 

  51. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  52. Jaynes ET (1957) Information theory and statistical mechanics II. Phys Rev 108:171–190

    Article  Google Scholar 

  53. Sollner J, Mayer B (2006) Machine learning approaches for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:200–208

    Article  PubMed  Google Scholar 

  54. El-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope prediction methods. Immunome Res 6(Suppl 2):S2

    Article  PubMed Central  PubMed  Google Scholar 

  55. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Jameson BA, Wolf H (1988) The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci 4:181–186

    CAS  PubMed  Google Scholar 

  57. Pellequer JL, Westhof E, Van Regenmortel MH (1991) Predicting location of continuous epitopes in proteins from their primary structures. Methods Enzymol 203:176–201

    Article  CAS  PubMed  Google Scholar 

  58. Pellequer JL, Westhof E, Van Regenmortel MH (1993) Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol Lett 36:83–99

    Article  CAS  PubMed  Google Scholar 

  59. Saha S, Bhasin M, Raghava GP (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79

    Article  PubMed Central  PubMed  Google Scholar 

  60. Saha S, Raghava GP (2007) Prediction methods for B-cell epitopes. Methods Mol Biol 409:387–394

    Article  CAS  PubMed  Google Scholar 

  61. Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Vita R, Vaughan K, Zarebski L et al (2006) Curation of complex, context-dependent immunological data. BMC Bioinform 7:341

    Article  Google Scholar 

  63. Kim Y, Ponomarenko J, Zhu Z et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Salimi N, Fleri W, Peters B, Sette A (2012) The immune epitope database: a historical retrospective of the first decade. Immunology 137:117–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Vita R, Peters B, Sette A (2008) The curation guidelines of the immune epitope database and analysis resource. Cytometry A 73:1066–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sollner J (2006) Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:209–214

    Article  PubMed  Google Scholar 

  67. Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107

    Article  CAS  PubMed  Google Scholar 

  68. Van Regenmortel MH, Pellequer JL (1994) Predicting antigenic determinants in proteins: looking for unidimensional solutions to a three-dimensional problem? Pept Res 7:224–228

    PubMed  Google Scholar 

  69. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–D303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18:342–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14:246–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    Article  CAS  PubMed  Google Scholar 

  73. Janin J (1979) Surface and inside volumes in globular proteins. Nature 277:491–492

    Article  CAS  PubMed  Google Scholar 

  74. Tainer JA, Getzoff ED, Alexander H et al (1984) The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature 312:127–134

    Article  CAS  PubMed  Google Scholar 

  75. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins: a tool for the selection of peptide antigens. Naturwissenschaften 72:212–213

    Article  CAS  Google Scholar 

  76. Alix AJ (1999) Predictive estimation of protein linear epitopes by using the program PEOPLE. Vaccine 18:311–314

    Article  CAS  PubMed  Google Scholar 

  77. Odorico M, Pellequer JL (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit 16:20–22

    Article  CAS  PubMed  Google Scholar 

  78. Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33:W168–W171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567

    Article  PubMed Central  PubMed  Google Scholar 

  80. Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Ponomarenko J, Bui HH, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes.BMC Bioinformatics 9:514

    Google Scholar 

  82. Sali A, Potterton L, Yuan F et al (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  83. Eswar N, Eramian D, Webb B et al (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159

    Article  CAS  PubMed  Google Scholar 

  84. Yang Z, Lasker K, Schneidman-Duhovny D et al (2012) UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 179:269–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Thornton JM, Edwards MS, Taylor WR, Barlow DJ (1986) Location of ‘continuous’ antigenic determinants in the protruding regions of proteins. EMBO J 5:409–413

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65:40–48

    Article  CAS  PubMed  Google Scholar 

  87. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21:243–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Rubinstein ND, Mayrose I, Pupko T (2009) A machine-learning approach for predicting B-cell epitopes. Mol Immunol 46:840–847

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Q, Wang P, Kim Y et al (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36:W513–W518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Reimer U (2009) Prediction of linear B-cell epitopes. Methods Mol Biol 524:335–344

    Article  CAS  PubMed  Google Scholar 

  91. Costa JG, Faccendini PL, Sferco SJ et al (2013) Evaluation and comparison of the ability of online available prediction programs to predict true linear B-cell epitopes. Protein Pept Lett 20:724–730

    Article  CAS  PubMed  Google Scholar 

  92. Yao B, Zheng D, Liang S, Zhang C (2013) Conformational B-cell epitope prediction on antigen protein structures: a review of current algorithms and comparison with common binding site prediction methods. PLoS One 8:e62249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an Angelita T. Reyes Centennial Professorial Chair grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Eugenio C. Caoili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caoili, S.E.C. (2014). Hybrid Methods for B-Cell Epitope Prediction. In: De, R., Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 1184. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1115-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1115-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1114-1

  • Online ISBN: 978-1-4939-1115-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics