Skip to main content

High-Throughput Genomic Mapping of Vector Integration Sites in Gene Therapy Studies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1185))

Abstract

Gene therapy has enormous potential to treat a variety of infectious and genetic diseases. To date hundreds of patients worldwide have received hematopoietic cell products that have been gene-modified with retrovirus vectors carrying therapeutic transgenes, and many patients have been cured or demonstrated disease stabilization as a result (Adair et al., Sci Transl Med 4:133ra57, 2012; Biffi et al., Science 341:1233158, 2013; Aiuti et al., Science 341:1233151, 2013; Fischer et al., Gene 525:170–173, 2013). Unfortunately, for some patients the provirus integration dysregulated the expression of nearby genes leading to clonal outgrowth and, in some cases, cancer. Thus, the unwanted side effect of insertional mutagenesis has become a major concern for retrovirus gene therapy. The careful study of retrovirus integration sites (RIS) and the contribution of individual gene-modified clones to hematopoietic repopulating cells is of crucial importance for all gene therapy studies. Supporting this, the US Food and Drug Administration (FDA) has mandated the careful monitoring of RIS in all clinical trials of gene therapy. An invaluable method was developed: linear amplification mediated-polymerase chain reaction (LAM-PCR) capable of analyzing in vitro and complex in vivo samples, capturing valuable genomic information directly flanking the site of provirus integration. Linking this method and similar methods to high-throughput sequencing has now made possible an unprecedented understanding of the integration profile of various retrovirus vectors, and allows for sensitive monitoring of their safety. It also allows for a detailed comparison of improved safety-enhanced gene therapy vectors. An important readout of safety is the relative contribution of individual gene-modified repopulating clones. One limitation of LAM-PCR is that the ability to capture the relative contribution of individual clones is compromised because of the initial linear PCR common to all current methods. Here, we describe an improved protocol developed for efficient capture, sequencing, and analysis of RIS that preserves gene-modified clonal contribution information. We also discuss methods to assess dominant/overrepresented gene-modified clones in preclinical and clinical models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Adair JE, Beard BC, Trobridge GD et al (2012) Extended survival of glioblastoma patients after chemoprotective HSC gene therapy. Sci Transl Med 4:133ra57

    PubMed Central  PubMed  Google Scholar 

  2. Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419, erratum appears in Science. 2003 Oct 24;302(5645):568

    Article  CAS  PubMed  Google Scholar 

  3. Kustikova O, Fehse B, Modlich U et al (2005) Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308:1171–1174

    Article  CAS  PubMed  Google Scholar 

  4. Ott MG, Schmidt M, Schwarzwaelder K et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  CAS  PubMed  Google Scholar 

  5. Bender MA, Gelinas RE, Miller AD (1989) A majority of mice show long-term expression of a human b-globin gene after retrovirus transfer into hematopoietic stem cells. Mol Cell Biol 9:1426–1434

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Cavazza A, Moiani A, Mavilio F (2013) Mechanisms of retroviral integration and mutagenesis. Hum Gene Ther 24:119–131

    Article  CAS  PubMed  Google Scholar 

  7. Nolta JA, Dao MA, Wells S et al (1996) Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc Natl Acad Sci U S A 93:2414–2419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Devon RS, Porteous DJ, Brookes AJ (1995) Splinkerettes–improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23:1644–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tisdale JF, Hanazono Y, Sellers SE et al (1998) Ex vivo expansion of genetically marked Rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 92:1131–1141

    CAS  PubMed  Google Scholar 

  10. Wu T, Kim HJ, Sellers SE et al (2000) Prolonged high-level detection of retrovirally marked hematopoietic cells in nonhuman primates after transduction of CD34+ progenitors using clinically feasible methods. Mol Ther 1:285–293

    Article  CAS  PubMed  Google Scholar 

  11. Kim HJ, Tisdale JF, Wu T et al (2000) Many multipotential gene-marked progenitor or stem cell clones contribute to hematopoiesis in nonhuman primates. Blood 96:1–8

    CAS  PubMed  Google Scholar 

  12. Schmidt M, Hoffmann G, Wissler M et al (2001) Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther 12:743–749

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt M, Glimm H, Lemke N et al (2001) A model for the detection of clonality in marked hematopoietic stem cells. Ann NY Acad Sci 938:146–155

    Article  CAS  PubMed  Google Scholar 

  14. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  CAS  PubMed  Google Scholar 

  15. Paruzynski A, Arens A, Gabriel R et al (2010) Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 5:1379–1395

    Article  CAS  PubMed  Google Scholar 

  16. Ronen K, Negre O, Roth S et al (2011) Distribution of lentiviral vector integration sites in mice following therapeutic gene transfer to treat -thalassemia. Mol Ther 19:1273–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang GP, Garrigue A, Ciuffi A et al (2008) DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic Acids Res 36:e49

    Article  PubMed Central  PubMed  Google Scholar 

  18. Beard BC, Trobridge GD, Ironside C et al (2010) Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J Clin Invest 120:2345–2354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Uren AG, Kool J, Berns A et al (2005) Retroviral insertional mutagenesis: past, present and future. Oncogene 24:7656–7672

    Article  CAS  PubMed  Google Scholar 

  20. Quail MA, Kozarewa I, Smith F et al (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Trobridge GD, Miller DG, Jacobs MA et al (2006) Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A 103:1498–1503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Beard BC, Dickerson D, Beebe K et al (2007) Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells. Mol Ther 15:1356–1365

    Article  CAS  PubMed  Google Scholar 

  23. Beard BC, Keyser KA, Trobridge GD et al (2007) Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, and foamy virus. Hum Gene Ther 18:423–434

    Article  CAS  PubMed  Google Scholar 

  24. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  CAS  PubMed  Google Scholar 

  26. Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  CAS  PubMed  Google Scholar 

  27. Biffi A, Montini E, Lorioli L et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158

    Article  PubMed  Google Scholar 

  28. Schmidt M, Schwarzwaelder K, Bartholomae CC et al (2009) Detection of retroviral integration sites by linear amplification-mediated PCR and tracking of individual integration clones in different samples. Methods Mol Biol 506:363–372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Allie Evans and Sum-Ying Chiu for their technical assistance in conduct of this work. We also acknowledge the assistance of Grace Choi in preparing the manuscript. This work is supported in part by grants DK076973 (B.C.B.), HL115128, HL116217, HL098489, CA114218, HL085693, and AI097100 (H.P.K.) from the National Institutes of Health, Bethesda, MD. H.P.K. is a Markey Molecular Medicine Investigator and the recipient of the José Carreras/E.D. Thomas Endowed Chair for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Kiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Beard, B.C., Adair, J.E., Trobridge, G.D., Kiem, HP. (2014). High-Throughput Genomic Mapping of Vector Integration Sites in Gene Therapy Studies. In: Bunting, K., Qu, CK. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology, vol 1185. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1133-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1133-2_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1132-5

  • Online ISBN: 978-1-4939-1133-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics