Skip to main content

Processing and Degradation of Chloroplast Extension Peptides

  • Chapter
  • First Online:
Book cover Plastid Biology

Part of the book series: Advances in Plant Biology ((AIPB,volume 5))

Abstract

Most chloroplast proteins are synthesized as larger precursors with cleavable extension peptides. These extensions include import signals called transit peptides, export signals for thylakoid transfer, and the C-terminal extension of the chloroplast-encoded D1 subunit of the photosystem II. Transit peptides are necessary for transport of nuclear-encoded proteins from the cytoplasm across the double-membrane envelope, and are cleaved off by Stromal Processing Peptidase (SPP) in the stroma. Further degradation of transit peptides involves SPP and Presequence Protease (PreP). Thylakoid-transfer sequences are required for correct intraorganellar protein sorting and cleaved by Thylakoidal Processing Peptidase (TPP) in the thylakoid lumen. The C-terminal extension of the D1 protein is not required for precursor targeting and integration into the protein complex; however its removal by Carboxyl-terminal peptidase called CtpA in the thylakoid lumen is needed for proper formation of the photosystem II Mn4CaO5 cluster. Biochemical studies in the 1980s–1990s defined basic properties of SPP, TPP and CtpA, while PreP was discovered in the early 2000s. Recent molecular genetic studies demonstrated physiological importance as well as some unprecedented functions of these enzymes. This chapter gives a comprehensive survey on processing and degradation of chloroplast extension peptides. The emphasis is on biochemical, molecular and evolutionary aspects of proteases. The significances of the presence and processing of these extension peptides are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid beta peptide

ACP:

Acyl Carrier Protein

AD:

Alzheimer’s disease

cpSEC:

Chloroplastic SEC

cpSRP:

Chloroplastic Signal Recognition Particle

cpTAT:

Chloroplastic Twine-Arginine-Transport

CtpA:

The D1 Carboxyl-terminal peptidase

GFP:

Green Fluorescent Protein

HSP21:

Heat Shock Protein 21

MPP:

Mitochondrial Processing Peptidase

MS:

Mass Spectrometry

OEC:

Oxygen Evolving Complex

Plsp:

Plastidic type I signal peptidase

PreP:

Presequence Protease

RBCS:

Small subunit of Rubisco

ROS:

Reactive Oxygen Species

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

S2P:

Site-2-Protease

SPase I:

Type I signal peptidase

SPP:

Stromal Processing Peptidase

SStpPs:

Transit peptide of the RBCS precursor

TIC:

Transocon at the Inner-envelope-membrane of Chloroplasts

TOC:

Translocon at the Outer-envelope-membrane of Chloroplasts

TPP:

Thylakoidal Processing Peptidase

References

  1. Alikhani N, Berglund AK, Engmann T, Spanning E, Vogtle FN, Pavlov P, Meisinger C, Langer T, Glaser E (2011) Targeting capacity and conservation of PreP homologues localization in mitochondria of different species. J Mol Biol 410:400–410

    Article  PubMed  CAS  Google Scholar 

  2. Alikhani N, Guo L, Yan S, Du H, Pinho CM, Chen JX, Glaser E, Yan SS (2011) Decreased proteolytic activity of the mitochondrial amyloid-beta degrading enzyme, PreP peptidasome, in Alzheimer’s disease brain mitochondria. J Alzheimers Dis 27:75–87

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Anbudurai PR, Mor TS, Ohad I, Shestakov SV, Pakrasi HB (1994) The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc Natl Acad Sci U S A 91:8082–8086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Artenstein AW, Opal SM (2011) Proprotein convertases in health and disease. New Eng J Med 365:2507–2518

    Article  PubMed  CAS  Google Scholar 

  5. Backman HG, Pessoa J, Eneqvist T, Glaser E (2009) Binding of divalent cations is essential for the activity of the organellar peptidasome in Arabidopsis thaliana, AtPreP. FEBS Lett 583:2727–2733

    Article  PubMed  Google Scholar 

  6. Baldwin AJ, Inoue K (2006) The most C-terminal tri-glycine segment within the polyglycine stretch of the pea Toc75 transit peptide plays a critical role for targeting the protein to the chloroplast outer envelope membrane. FEBS J 273:1547–1555

    Article  PubMed  CAS  Google Scholar 

  7. Barbrook AC, Packer JC, Howe CJ (1996) Inhibition by penem of processing peptidases from cyanobacteria and chloroplast thylakoids. FEBS Lett 398:198–200

    Article  PubMed  CAS  Google Scholar 

  8. Baymann F, Zito F, Kuras R, Minai L, Nitschke W, Wollman FA (1999) Functional characterization of Chlamydomonas mutants defective in cytochrome f maturation. J Biol Chem 274:22957–22967

    Article  PubMed  CAS  Google Scholar 

  9. Bhushan S, Lefebvre B, Stahl A, Wright SJ, Bruce BD, Boutry M, Glaser E (2003) Dual targeting and function of a protease in mitochondria and chloroplasts. EMBO Rep 4:1073–1078

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Bhushan S et al (2005) Catalysis, subcellular localization, expression and evolution of the targeting peptides degrading protease, AtPreP2. Plant Cell Physiol 46:985–996

    Article  PubMed  CAS  Google Scholar 

  11. Bhushan S, Kuhn C, Berglund AK, Roth C, Glaser E (2006) The role of the N-terminal domain of chloroplast targeting peptides in organellar protein import and miss-sorting. FEBS Lett 580:3966–3972

    Article  PubMed  CAS  Google Scholar 

  12. Bolter B, Nada A, Fulgosi H, Soll J (2006) A chloroplastic inner envelope membrane protease is essential for plant development. FEBS Lett 580:789–794

    Article  PubMed  Google Scholar 

  13. Bowyer JR, Packer JC, McCormack BA, Whitelegge JP, Robinson C, Taylor MA (1992) Carboxyl-terminal processing of the D1 protein and photoactivation of water-splitting in photosystem II. Partial purification and characterization of the processing enzyme from Scenedesmus obliquus and Pisum sativum. J Biol Chem 267:5424–5433

    PubMed  CAS  Google Scholar 

  14. Cederholm SN, Backman HG, Pesaresi P, Leister D, Glaser E (2009) Deletion of an organellar peptidasome PreP affects early development in Arabidopsis thaliana. Plant Mol Biol 71:497–508

    Article  Google Scholar 

  15. Chaal BK, Mould RM, Barbrook AC, Gray JC, Howe CJ (1998) Characterization of a cDNA encoding the thylakoidal processing peptidase from Arabidopsis thaliana. Implications for the origin and catalytic mechanism of the enzyme. J Biol Chem 273:689–692

    Article  PubMed  CAS  Google Scholar 

  16. Chen H, Zhang D, Guo J, Wu H, Jin M, Lu Q, Lu C, Zhang L (2006) A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. Plant Mol Biol 61:567–575

    Article  PubMed  CAS  Google Scholar 

  17. Di Cola A, Robinson C (2005) Large-scale translocation reversal within the thylakoid Tat system in vivo. J Cell Biol 171:281–289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Endow JK, Ruppel NJ, Inoue K (2010) Keep the balloon deflated: the significance of protein maturation for thylakoid flattening. Plant Signal Behav 5:721–723

    Article  PubMed  PubMed Central  Google Scholar 

  20. Falkevall A et al (2006) Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem 281:29096–29104

    Article  PubMed  CAS  Google Scholar 

  21. Frielingsdorf S, Klosgen RB (2007) Prerequisites for terminal processing of thylakoidal Tat substrates. J Biol Chem 282:24455–24462

    Article  PubMed  CAS  Google Scholar 

  22. Fujita S, Inagaki N, Yamamoto Y, Taguchi F, Matsumoto A, Satoh K (1995) Identification of the carboxyl-terminal processing protease for the D1 precursor protein of the photosystem-ii reaction-center of spinach. Plant Cell Physiol 36:1169–1177

    CAS  Google Scholar 

  23. Gavel Y, von Heijne G (1990) A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett 261:455–458

    Article  PubMed  CAS  Google Scholar 

  24. Glaser E, Alikhani N (2010) The organellar peptidasome, PreP: a journey from Arabidopsis to Alzheimer’s disease. Biochim Biophys Acta 1797:1076–1080

    Article  PubMed  CAS  Google Scholar 

  25. Hageman J, Robinson C, Smeekens S, Weisbeek P (1986) A thylakoid processing protease is required for complete maturation of the lumen protein plastocyanin. Nature 324:567–569

    Article  CAS  Google Scholar 

  26. Hageman J, Baecke C, Ebskamp M, Pilon R, Smeekens S, Weisbeek P (1990) Protein import into and sorting inside the chloroplast are independent processes. Plant Cell 2:479–494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Halpin C, Elderfield PD, James HE, Zimmermann R, Dunbar B, Robinson C (1989) The reaction specificities of the thylakoidal processing peptidase and Escherichia coli leader peptidase are identical. EMBO J 8:3917–3921

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Henry R, Carrigan M, McCaffrey M, Ma X, Cline K (1997) Targeting determinants and proposed evolutionary basis for the Sec and the Delta pH protein transport systems in chloroplast thylakoid membranes. J Cell Biol 136:823–832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Howe CJ, Floyd KA (2001) Chloroplast and mitochondrial type I signal peptidases. In: Dalbey RE, Sigman DS (eds) Co- and posttranslational proteolysis of proteins, Academic, San Diego, pp 101–125

    Google Scholar 

  30. Hsu SC, Endow JK, Ruppel NJ, Roston RL, Baldwin AJ, Inoue K (2011) Functional diversification of thylakoidal processing peptidases in Arabidopsis thaliana. PLoS ONE 6:e27258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Hugosson M, Andreu D, Boman HG, Glaser E (1994) Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import. Eur J Biochem 223:1027–1033

    Article  PubMed  CAS  Google Scholar 

  32. Inagaki N, Fujita S, Satoh K (1989) Solubilization and partial-purification of a thylakoidal enzyme of spinach involved in the processing of D1-protein. FEBS Lett 246:218–222

    Article  CAS  Google Scholar 

  33. Inagaki N, Yamamoto Y, Mori H, Satoh K (1996) Carboxyl-terminal processing protease for the D1 precursor protein: cloning and sequencing of the spinach cDNA. Plant Mol Biol 30:39–50

    Article  PubMed  CAS  Google Scholar 

  34. Inoue K, Keegstra K (2003) A polyglycine stretch is necessary for proper targeting of the protein translocation channel precursor to the outer envelope membrane of chloroplasts. Plant J 34:661–669

    Article  PubMed  CAS  Google Scholar 

  35. Inoue K, Demel R, de Kruijff B, Keegstra K (2001) The N-terminal portion of the preToc75 transit peptide interacts with membrane lipids and inhibits binding and import of precursor proteins into isolated chloroplasts. Eur J Biochem 268:4036–4043

    Article  PubMed  CAS  Google Scholar 

  36. Inoue K, Baldwin AJ, Shipman RL, Matsui K, Theg SM, Ohme-Takagi M (2005) Complete maturation of the plastid protein translocation channel requires a type I signal peptidase. J Cell Biol 171:425–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Ivleva NB, Shestakov SV, Pakrasi HB (2000) The carboxyl-terminal extension of the precursor D1 protein of photosystem II is required for optimal photosynthetic performance of the cyanobacterium Synechocystis sp PCC 6803. Plant Physiol 124:1403–1411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. James HE, Bartling D, Musgrove JE, Kirwin PM, Herrmann RG, Robinson C (1989) Transport of proteins into chloroplasts—import and maturation of precursors to the 33-kDa, 23-kDa, and 16-kDa proteins of the photosynthetic oxygen-evolving complex. J Biol Chem 264:19573–19576

    PubMed  CAS  Google Scholar 

  39. Johnson KA, Bhushan S, Stahl A, Hallberg BM, Frohn A, Glaser E, Eneqvist T (2006) The closed structure of presequence protease PreP forms a unique 10,000 Angstroms3 chamber for proteolysis. EMBO J 25:1977–1986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Karnauchov I, Herrmann RG, Pakrasi HB, Klosgen RB (1997) Transport of CtpA protein from the cyanobacterium Synechocystis 6803 across the thylakoid membrane in chloroplasts. Eur J Biochem 249:497–504

    Article  PubMed  CAS  Google Scholar 

  41. Kieselbach T, Schroder WP (2003) The proteome of the chloroplast lumen of higher plants. Photosynth Res 78:249–264

    Article  PubMed  CAS  Google Scholar 

  42. Kirwin PM, Elderfield PD, Robinson C (1987) Transport of proteins into chloroplasts - partial-purification of a thylakoidal processing peptidase involved in plastocyanin biogenesis. J Biol Chem 262:16386–16390

    PubMed  CAS  Google Scholar 

  43. Kirwin PM, Elderfield PD, Williams RS, Robinson C (1988) Transport of proteins into chloroplasts - organization, orientation, and lateral distribution of the plastocyanin processing peptidase in the thylakoid network. J Biol Chem 263:18128–18132

    PubMed  CAS  Google Scholar 

  44. Klinkert B, Ossenbuhl F, Sikorski M, Berry S, Eichacker L, Nickelsen J (2004) PratA, a periplasmic tetratricopeptide repeat protein involved in biogenesis of photosystem II in Synechocystis sp PCC 6803. J Biol Chem 279:44639–44644

    Article  PubMed  CAS  Google Scholar 

  45. Kmiec B, Glaser E (2012) A novel mitochondrial and chloroplast peptidasome, PreP. Physiol Plant 145:180–186

    Article  PubMed  CAS  Google Scholar 

  46. Kuvikova S, Tichy M, Komenda J (2005) A role of the C-terminal extension of the photosystem II D1 protein in sensitivity of the cyanobacterium Synechocystis PCC 6803 to photoinhibition. Photoch Photobiol Sci 4:1044–1048

    Article  CAS  Google Scholar 

  47. Liao DI, Qian J, Chisholm DA, Jordan DB, Diner BA (2000) Crystal structures of the photosystem II D1 C-terminal processing protease. Nat Struct Biol 7:749–753

    Article  PubMed  CAS  Google Scholar 

  48. Liu HJ, Roose JL, Cameron JC, Pakrasi HB (2011) A genetically tagged psb27 protein allows purification of two consecutive photosystem ii (psii) assembly intermediates in Synechocystis 6803, a cyanobacterium. J Biol Chem 286:24865–24871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Moberg P, Stahl A, Bhushan S, Wright SJ, Eriksson A, Bruce BD, Glaser E (2003) Characterization of a novel zinc metalloprotease involved in degrading targeting peptides in mitochondria and chloroplasts. Plant J 36:616–628

    Article  PubMed  CAS  Google Scholar 

  50. Nilsson R, van Wijk KJ (2002) Transient interaction of cpSRP54 with elongating nascent chains of the chloroplast-encoded D1 protein; ‘cpSRP54 caught in the act’. FEBS Lett 524:127–133

    Article  PubMed  CAS  Google Scholar 

  51. Nixon PJ, Michoux F, Yu JF, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Oblong JE, Lamppa GK (1992) Identification of two structurally related proteins involved in proteolytic processing of precursors targeted to the chloroplast. EMBO J 11:4401–4409

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Paetzel M, Karla A, Strynadka NC, Dalbey RE (2002) Signal peptidases. Chem Rev 102:4549–4580

    Article  PubMed  CAS  Google Scholar 

  54. Peltier JB et al (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Popelkova H, Im MM, D’Auria J, Betts SD, Lydakis-Simantiris N, Yocum CF (2002) N-terminus of the photosystem II manganese stabilizing protein: effects of sequence elongation and truncation. Biochemistry 41:2702–2711

    Article  PubMed  CAS  Google Scholar 

  56. Reumann S, Inoue K, Keegstra K (2005) Evolution of the general protein import pathway of plastids. Mol Membr Biol 22:73–86

    Article  PubMed  CAS  Google Scholar 

  57. Richter S, Lamppa GK (1998) A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc Natl Acad Sci U S A 95:7463–7468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Richter S, Lamppa GK (1999) Stromal processing peptidase binds transit peptides and initiates their ATP-dependent turnover in chloroplasts. J Cell Biol 147:33–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Richter S, Lamppa GK (2002) Determinants for removal and degradation of transit peptides of chloroplast precursor proteins. J Biol Chem 277:43888–43894

    Article  PubMed  CAS  Google Scholar 

  60. Richter S, Lamppa GK (2003) Structural properties of the chloroplast stromal processing peptidase required for its function in transit peptide removal. J Biol Chem 278:39497–39502

    Article  PubMed  CAS  Google Scholar 

  61. Robinson C, Mant A (2005) Biogenesis of the thylakoid membrane. In Möller SG (ed) Plastids, Blackwell: Oxford, pp 180–213

    Google Scholar 

  62. Rohl T, van Wijk KJ (2001) In vitro reconstitution of insertion and processing of cytochrome f in a homologous chloroplast translation system. J Biol Chem 276:35465–35472

    Article  PubMed  CAS  Google Scholar 

  63. Roose JL, Pakrasi HB (2004) Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II. J Biol Chem 279:45417–45422

    Article  PubMed  CAS  Google Scholar 

  64. Roose JL, Pakrasi HB (2008) The Psb27 protein facilitates manganese cluster assembly in photosystem II. J Biol Chem 283:4044–4050

    Article  PubMed  CAS  Google Scholar 

  65. Rudhe C, Clifton R, Whelan J, Glaser E (2002) N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency. J Mol Biol 324:577–585

    Article  PubMed  CAS  Google Scholar 

  66. Saito A, Hizukuri Y, Matsuo E, Chiba S, Mori H, Nishimura O, Ito K, Akiyama Y (2011) Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A 108:13740–13745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Satoh K, Yamamoto Y (2007) The carboxyl-terminal processing of precursor D1 protein of the photosystem II reaction center. Photosynth Res 94:203–215

    Article  PubMed  CAS  Google Scholar 

  68. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526

    Article  PubMed  CAS  Google Scholar 

  69. Schottkowski M, Gkalympoudis S, Tzekova N, Stelljes C, Schunemann D, Ankele E, Nickelsen J (2009) Interaction of the Periplasmic PratA Factor and the PsbA (D1) Protein during biogenesis of photosystem ii in Synechocystis sp PCC 6803. J Biol Chem 284:1813–1819

    Article  PubMed  CAS  Google Scholar 

  70. Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  71. Shackleton JB, Robinson C (1991) Transport of proteins into chloroplasts. The thylakoidal processing peptidase is a signal-type peptidase with stringent substrate requirements at the -3 and -1 positions. J Biol Chem 266:12152–12156

    PubMed  CAS  Google Scholar 

  72. Shestakov SV, Anbudurai PR, Stanbekova GE, Gadzhiev A, Lind LK, Pakrasi HB (1994) Molecular cloning and characterization of the ctpA gene encoding a carboxyl-terminal processing protease. Analysis of a spontaneous photosystem II-deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 269:19354–19359

    PubMed  CAS  Google Scholar 

  73. Shipman RL, Inoue K (2009) Suborganellar localization of plastidic type I signal peptidase 1 depends on chloroplast development. FEBS Lett 583:938–942

    Article  PubMed  CAS  Google Scholar 

  74. Shipman-Roston RL, Ruppel NJ, Damoc C, Phinney BS, Inoue K (2010) The significance of protein maturation by plastidic type I signal peptidase 1 for thylakoid development in Arabidopsis chloroplasts. Plant Physiol 152:1297–1308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P (1986) The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46:365–375

    Article  PubMed  CAS  Google Scholar 

  76. Stahl A, Moberg P, Ytterberg J, Panfilov O, von Lowenhielm HB, Nilsson F, Glaser E (2002) Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants. J Biol Chem 277:41931–41939

    Article  PubMed  CAS  Google Scholar 

  77. Stahl A et al (2005) Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different. J Mol Biol 349:847–860

    Article  PubMed  CAS  Google Scholar 

  78. Taylor MA, Packer JCL, Bowyer JR (1988) Processing of the D1 polypeptide of the photosystem-II reaction center and photoactivation of a low fluorescence mutant (Lf-1) of Scenedesmus-Obliquus. FEBS Lett 237:229–233

    Article  CAS  Google Scholar 

  79. Tranel PJ, Keegstra K (1996) A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope. Plant Cell 8:2093–2104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Tranel PJ, Froehlich J, Goyal A, Keegstra K (1995) A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J 14:2436–2446

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Trosch R, Jarvis P (2011) The stromal processing peptidase of chloroplasts is essential in arabidopsis, with knockout mutations causing embryo arrest after the 16-cell stage. PLoS ONE 6:e23039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Trost JT, Chisholm DA, Jordan DB, Diner BA (1997) The D1 C-terminal processing protease of photosystem II from Scenedesmus obliquus—protein purification and gene characterization in wild type and processing mutants. J Biol Chem 272:20348–20356

    Article  PubMed  CAS  Google Scholar 

  83. Vandervere PS, Bennett TM, Oblong JE, Lamppa GK (1995) A chloroplast processing enzyme involved in precursor maturation shares a zinc-binding motif with a recently recognized family of metalloendopeptidases. Proc Natl Acad Sci U S A 92:7177–7181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. von Heijne G, Steppuhn J, Herrmann RG (1989) Domain-structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Article  PubMed  CAS  Google Scholar 

  85. Wallace TP, Robinson C, Howe CJ (1990) The reaction specificities of the pea and a cyanobacterial thylakoid processing peptidase are similar but not identical. FEBS Lett 272:141–144

    Article  PubMed  CAS  Google Scholar 

  86. Wei L, Guo J, Ouyang M, Sun X, Ma J, Chi W, Lu C, Zhang L (2010) LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J Biol Chem 285:21391–21398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Yamamoto Y, Inagaki N, Satoh K (2001) Overexpression and characterization of carboxyl-terminal processing protease for precursor D1 protein: regulation of enzyme-substrate interaction by molecular environments. J Biol Chem 276:7518–7525

    Article  PubMed  CAS  Google Scholar 

  88. Yin SM, Sun XW, Zhang LX (2008) An Arabidopsis ctpA homologue is involved in the repair of photosystem II under high light. Chin Sci Bull 53:1021–1026

    Article  CAS  Google Scholar 

  89. Yue RQ, Wang XF, Chen JY, Ma XX, Zhang HH, Mao CZ, Wu P (2010) A rice stromal processing peptidase regulates chloroplast and root development. Plant Cell Physiol 51:475–485

    Article  PubMed  CAS  Google Scholar 

  90. Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci U S A 98:13443–13448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Zhbanko M, Zinchenko V, Gutensohn M, Schierhorn A, Klosgen RB (2005) Inactivation of a predicted leader peptidase prevents photoautotrophic growth of Synechocystis sp. strain PCC 6803. J Bacteriol 187:3071–3078

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Zhong R, Wan JX, Jin RG, Lamppa G (2003) A pea antisense gene for the chloroplast stromal processing peptidase yields seedling lethals in Arabidopsis: survivors show defective GFP import in vivo. Plant J 34:802–812

    Article  PubMed  CAS  Google Scholar 

  93. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3:e1994

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work on TPP in the Inoue laboratory has been supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-FG02-08ER15963. The work on PreP in the Glaser laboratory was supported by research grants from the Swedish Research Council (VR-NT 2009-5641), Carl Tryggers Foundation and Alzheimerfonden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Inoue, K., Glaser, E. (2014). Processing and Degradation of Chloroplast Extension Peptides. In: Theg, S., Wollman, FA. (eds) Plastid Biology. Advances in Plant Biology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1136-3_12

Download citation

Publish with us

Policies and ethics