Skip to main content

UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo In Vivo and Ex Vivo

  • Protocol
  • First Online:
Book cover Tissue Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1189))

Abstract

Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827

    Article  PubMed  CAS  Google Scholar 

  2. Keller R, Shook D, Skoglund P (2008) The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol 5:015007

    Article  PubMed  Google Scholar 

  3. Cai Y, Sheetz MP (2009) Force propagation across cells: mechanical coherence of dynamic cytoskeletons. Curr Opin Cell Biol 21:47–50

    Article  PubMed  CAS  Google Scholar 

  4. Lecuit T, Lenne P-F, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184

    Article  PubMed  CAS  Google Scholar 

  5. Rauzi M, Lenne P-F (2011) Cortical forces in cell shape changes and tissue morphogenesis. Curr Top Dev Biol 95:93–144

    Article  PubMed  Google Scholar 

  6. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  PubMed  CAS  Google Scholar 

  7. Oates AC, Gorfinkiel N, González-Gaitán M et al (2009) Quantitative approaches in developmental biology. Nat Rev Genet 10:517–530

    Article  PubMed  CAS  Google Scholar 

  8. Colombelli J, Reynaud EG, Stelzer EHK (2007) Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery. Methods Cell Biol 82:267–291

    Article  PubMed  CAS  Google Scholar 

  9. Colombelli J, Solon J (2012) Force communication in multicellular tissues addressed by laser nanosurgery. Cell and tissue research. Springer, Berlin

    Google Scholar 

  10. Niemz MH (2007) Laser-tissue interactions. Fundamentals and applications, 3rd edn. Springer, Berlin

    Google Scholar 

  11. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Article  PubMed  CAS  Google Scholar 

  12. Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  13. Kane D, Adams R (2002) Life at the edge: epiboly and involution in the zebrafish. Results Probl Cell Differ 40:117–135

    Article  PubMed  Google Scholar 

  14. Siddiqui M, Sheikh H, Tran C et al (2010) The tight junction component Claudin E is required for zebrafish epiboly. Dev Dyn 239:715–722

    Article  PubMed  CAS  Google Scholar 

  15. Köppen M, Fernández BG, Carvalho L et al (2006) Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 133:2671–2681

    Article  PubMed  Google Scholar 

  16. Behrndt M, Salbreux G, Campinho P et al (2012) Forces driving epithelial spreading in zebrafish gastrulation. Science 338:257–260

    Article  PubMed  CAS  Google Scholar 

  17. Arboleda-Estudillo Y, Krieg M, Stühmer J et al (2010) Movement directionality in collective migration of germ layer progenitors. Curr Biol 20:161–169

    Article  PubMed  CAS  Google Scholar 

  18. Diz-Muñoz A, Krieg M, Bergert M et al (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8:e1000544

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mayer M, Depken M, Bois JS et al (2010) Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467:617–621

    Article  PubMed  CAS  Google Scholar 

  20. Carvalho L, Heisenberg C-P (2009) Imaging zebrafish embryos by two-photon excitation time-lapse microscopy. Methods Mol Biol 546:273–287

    Article  PubMed  Google Scholar 

  21. Colombelli J, Grill SW (2004) Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev Sci Instrum 75:472–478

    Article  CAS  Google Scholar 

  22. Weber GF, Bjerke MA, DeSimone DW (2012) A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell 22:104–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Rauzi M, Verant P, Lecuit T et al (2008) Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat Cell Biol 10:1401–1410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Hauschild for advice and assistance to experimental work and the service facilities of the IST Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Philipp Heisenberg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Smutny, M., Behrndt, M., Campinho, P., Ruprecht, V., Heisenberg, CP. (2015). UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo In Vivo and Ex Vivo. In: Nelson, C. (eds) Tissue Morphogenesis. Methods in Molecular Biology, vol 1189. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1164-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1164-6_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1163-9

  • Online ISBN: 978-1-4939-1164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics