Skip to main content

Cholesterol Depletion Using Methyl-β-cyclodextrin

  • Protocol
  • First Online:
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1232))

Abstract

Cholesterol is an essential component of mammalian cells. It is the major lipid constituent of the plasma membrane and is also abundant in most other organelle membranes. In the plasma membrane cholesterol plays critical physical roles in the maintenance of membrane fluidity and membrane permeability. It is also important for membrane trafficking, cell signalling, and lipid as well as protein sorting. Cholesterol is essential for the formation of liquid ordered domains in model membranes, which in cells are known as lipid nanodomains or lipid rafts. Cholesterol depletion is widely used to study the role of cholesterol in cellular processes and can be performed over days using inhibitors of its synthesis or acutely over minutes using chemical reagents. Acute cholesterol depletion by methyl-β-cyclodextrin (MBCD) is the most widely used method and here we describe how it should be performed to avoid the common side-effect cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maxfield FR, van Meer G (2010) Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol 22:422–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Mahammad S, Parmryd I (2008) Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. Biochim Biophys Acta 1778:1251–1258

    Article  PubMed  CAS  Google Scholar 

  4. Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L et al (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol 129:121–132

    Article  PubMed  CAS  Google Scholar 

  5. Esfahani M, Bigler RD, Alfieri JL, Lund-Katz S, Baum JD et al (1993) Cholesterol regulates the cell surface expression of glycophospholipid-anchored CD14 antigen on human monocytes. Biochim Biophys Acta 1149:217–223

    Article  PubMed  CAS  Google Scholar 

  6. Nazih-Sanderson F, Pinchon G, Nion S, Fruchart JC, Delbart C (1997) HDL3-signalling in HepG2 cells involves glycosyl-phosphatidylinositol-anchored proteins. Biochim Biophys Acta 1346:45–60

    Article  PubMed  CAS  Google Scholar 

  7. Cerneus DP, Ueffing E, Posthuma G, Strous GJ, van der Ende A (1993) Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J Biol Chem 268:3150–3155

    PubMed  CAS  Google Scholar 

  8. Nguyen DH, Taub DD (2003) Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp Cell Res 291:36–45

    Article  PubMed  CAS  Google Scholar 

  9. Nishijo J, Moriyama S, Shiota S (2003) Interactions of cholesterol with cyclodextrins in aqueous solution. Chem Pharm Bull (Tokyo) 51:1253–1257

    Article  CAS  Google Scholar 

  10. Loftsson T, Magnusdottir A, Masson M, Sigurjonsdottir JF (2002) Self-association and cyclodextrin solubilization of drugs. J Pharm Sci 91:2307–2316

    Article  PubMed  CAS  Google Scholar 

  11. Behnke O, Tranum-Jensen J, van Deurs B (1984) Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes. Eur J Cell Biol 35:200–215

    PubMed  CAS  Google Scholar 

  12. Lopez CA, de Vries AH, Marrink SJ (2011) Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput Biol 7:e1002020

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Leventis R, Silvius JR (2001) Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J 81:2257–2267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035

    Article  PubMed  CAS  Google Scholar 

  15. van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175

    Article  PubMed  Google Scholar 

  16. Li Z, Wang M, Wang F, Gu Z, Du G et al (2007) Gamma-cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 77:245–255

    Article  PubMed  CAS  Google Scholar 

  17. Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem 186:17–22

    Article  PubMed  CAS  Google Scholar 

  18. Puglisi G, Ventura CA, Spadaro A, Campana G, Spampinato S (1995) Differential effects of modified beta-cyclodextrins on pharmacological activity and bioavailability of 4-biphenylacetic acid in rats after oral administration. J Pharm Pharmacol 47:120–123

    Article  PubMed  CAS  Google Scholar 

  19. Ohvo H, Slotte JP (1996) Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry 35:8018–8024

    Article  PubMed  CAS  Google Scholar 

  20. Levitan I, Christian AE, Tulenko TN, Rothblat GH (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol 115:405–416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Christian AE, Haynes MP, Phillips MC, Rothblat GH (1997) Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res 38:2264–2272

    PubMed  CAS  Google Scholar 

  22. Mahammad S, Dinic J, Adler J, Parmryd I (2010) Limited cholesterol depletion causes aggregation of plasma membrane lipid rafts inducing T cell activation. Biochim Biophys Acta 1801:625–634

    Article  PubMed  CAS  Google Scholar 

  23. Cox BE, Griffin EE, Ullery JC, Jerome WG (2007) Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J Lipid Res 48:1012–1021

    Article  PubMed  CAS  Google Scholar 

  24. Nguyen DH, Espinoza JC, Taub DD (2004) Cellular cholesterol enrichment impairs T cell activation and chemotaxis. Mech Ageing Dev 125:641–650

    Article  PubMed  CAS  Google Scholar 

  25. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST et al (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Magnus Bergvall’s Foundation, Signhild Engkvist’s Foundation, and O.E. and Edla Johansson’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingela Parmryd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mahammad, S., Parmryd, I. (2015). Cholesterol Depletion Using Methyl-β-cyclodextrin. In: Owen, D. (eds) Methods in Membrane Lipids. Methods in Molecular Biology, vol 1232. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1752-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1752-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1751-8

  • Online ISBN: 978-1-4939-1752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics