Skip to main content

Neural Underpinnings of Music: The Polyrhythmic Brain

  • Chapter
  • First Online:
Book cover Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has the remarkable ability to move our minds and bodies. Why do certain rhythms make us want to tap our feet, bop our heads or even get up and dance? And how does the brain process rhythmically complex rhythms during our experiences of music? In this chapter, we describe some common forms of rhythmic complexity in music and propose that the theory of predictive coding can explain how rhythm and rhythmic complexity are processed in the brain. We also consider how this theory may reveal why we feel so compelled by rhythmic tension in music. First, musical-theoretical and neuroscientific frameworks of rhythm are presented, in which rhythm perception is conceptualized as an interaction between what is heard (‘rhythm’) and the brain’s anticipatory structuring of music (‘the meter’). Second, three different examples of tension between rhythm and meter in music are described: syncopation, polyrhythm and groove. Third, we present the theory of predictive coding of music, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Fourth, empirical studies of neural and behavioral effects of syncopation, polyrhythm and groove will be reported, and we propose how these studies can be seen as special cases of the predictive coding theory. Finally, we argue that musical rhythm exploits the brain’s general principles of anticipation and propose that pleasure from musical rhythm may be a result of such anticipatory mechanisms.

The supplementary audio material can be downloaded from http://extras.springer.com

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although often used interchangeably, the difference between polyrhythm and polymeter is important to maintain. In the former, more than one rhythmic pattern is played simultaneously, underpinned by the same meter, while in the latter, more than one rhythm based on different meters is played simultaneously.

  2. 2.

    Microtiming, otherwise known as expressive timing or ‘swing’, refers to patterns of rhythmic events that do not occur exactly ‘on’ the pulse, but slightly ‘late’ or ‘early’ in relation to it [5052].

  3. 3.

    According to this understanding, the meter can be seen as conveying what has elsewhere been termed schematic expectations, whereas the perceptually syncopated rhythmic patterns are perceived according to veridical expectations [73].

References

  1. Clarke EF. Rhythm and timing in music. In: Deutsch D, editor. The psychology of music. 2nd ed. New York: Academic; 1999.

    Google Scholar 

  2. Fraisse P. Rhythm and tempo. In: Deutsch D, editor. The psychology of music. 1st ed. New York: Academic; 1982.

    Google Scholar 

  3. Rohrmeier MA, Koelsch S. Predictive information processing in music cognition. A critical review. Int J Psychophysiol. 2012;83(2):164–75.

    Article  PubMed  Google Scholar 

  4. Large EW, Kolen JF. Resonance and the perception of musical meter. Connect Sci. 1994;6(2):177–208.

    Article  Google Scholar 

  5. Martin JG. Rhythmic (hierarchical) versus serial structure in speech and other behavior. Psychol Rev. 1972;79(6):487–509.

    Article  PubMed  CAS  Google Scholar 

  6. Lerdahl F, Jackendoff R. A generative theory of tonal music. Cambridge: MIT Press; 1983.

    Google Scholar 

  7. Povel D-J, Essens P. Perception of temporal patterns. Music Percept. 1985;2(4):411–40.

    Article  Google Scholar 

  8. Parncutt R. A perceptual model of pulse salience and metrical accent in musical rhythms. Music Percept. 1994;11(4):409–64.

    Article  Google Scholar 

  9. Large EW, Snyder JS. Pulse and meter as neural resonance. Ann N Y Acad Sci. 2009;1169(1):46–57.

    Article  PubMed  Google Scholar 

  10. Jones MR. Musical time. In: Hallam S, Cross I, Thaut M, editors. The Oxford handbook of music psychology. New York: Oxford University Press; 2009. p. 81–92.

    Google Scholar 

  11. Toiviainen P, Luck G, Thompson MR. Embodied meter: hierarchical eigenmodes in music-induced movement. Music Percept. 2010;28(1):59–70.

    Article  Google Scholar 

  12. Longuet-Higgins HC, Lee C. The rhythmic interpretation of monophonic music. Music Percept. 1984;1(4):424–40.

    Article  Google Scholar 

  13. Temperley D. Music and probability. Cambridge: MIT Press; 2007.

    Google Scholar 

  14. Temperley D. A unified probabilistic model for polyphonic music analysis. J New Music Res. 2009;38(1):3–18.

    Article  Google Scholar 

  15. Temperley D. Modeling common-practice rhythm. Music Percept. 2010;27(5):355–76.

    Article  Google Scholar 

  16. Fitch WT, Rosenfeld AJ. Perception and production of syncopated rhythms. Music Percept. 2007;25(1):43–58.

    Article  Google Scholar 

  17. Large EW, Jones MR. The dynamics of attending: how people track time-varying events. Psychol Rev. 1999;106(1):119–59.

    Article  Google Scholar 

  18. Barnes R, Jones MR. Expectancy, attention and time. Cogn Psychol. 2000;41(3):254–311.

    Article  PubMed  CAS  Google Scholar 

  19. Jones MR. Attention and timing. In: Neuoff JG, editor. Ecological psychoacoustics. Amsterdam: Elsevier Academic Press; 2004. p. 49–85.

    Google Scholar 

  20. Clayton M, Sager R, Will U. In time with the music: the concept of entrainment and its significance for ethnomusicology. European Meetings in Ethnomusicology II (ESEM counterpoint 1). 2004:3–75.

    Google Scholar 

  21. Trost W, Vuilleumier P. Rhythmic entrainment as a mechanism for emotion induction by music: a neurophysiological perspective. In: Cochrane T, Fantini B, Scherer KR, editors. The emotional power of music: multidisciplinary perspectives on musical arousal, expression, and social control. New York: Oxford University Press; 2013. p. 213–25.

    Chapter  Google Scholar 

  22. London J. Hearing in time. New York: Oxford University Press; 2012.

    Book  Google Scholar 

  23. Phillips-Silver J, Aktipis AC, Bryant G. The ecology of entrainment: foundations of coordinated rhythmic movement. Music Percept. 2010;28(1):3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Molnar-Szakacz I, Overy K. Music and mirror neurons: from motion to ‘e’motion. Soc Cogn Affect Neurosci. 2006;1(3):235–41.

    Article  Google Scholar 

  25. Nozaradan S, Peretz I, Missal M, Mouraux A. Tagging the neuronal entrainment to beat and meter. J Neurosci. 2011;31(28):10234–40.

    Article  PubMed  CAS  Google Scholar 

  26. Temperley D, Sleator D. Modeling meter and harmony: a preference rule approach. Comput Music J. 1999;23(1):10–27.

    Article  Google Scholar 

  27. Dixon S. Automatic extraction of tempo and beat from expressive performances. J New Music Res. 2001;30(1):39–58.

    Article  Google Scholar 

  28. Volk A. The study of syncopation using inner metric analysis: linking theoretical and experimental analysis of metre in music. J New Music Res. 2008;37(4):259–73.

    Article  Google Scholar 

  29. Desain P, Honing H. Computational model of beat induction: the rule-based approach. J New Music Res. 1999;28(1):29–42.

    Article  Google Scholar 

  30. Margulis EH, Beatty AP. Musical style, psychoaesthetics, and prospects for entropy as an analytical tool. Comput Music J. 2008;32(4):64–78.

    Article  Google Scholar 

  31. Smith J, Honing H. Evaluation and extending computational models of rhythmic syncopation in music. Proceedings of the international computer music conference, New Orleans. 2006.

    Google Scholar 

  32. Ladinig O, Honing H, Haden G, Winkler I. Probing attentive and preattentive emergent meter in adult listeners without extensive musical training. Music Percept. 2009;26(4):377–86.

    Article  Google Scholar 

  33. Winkler I, Haden G, Ladinig O, Sziller I, Honing H. Newborn infants detect the beat in music. Proc Natl Acad Sci U S A. 2009;106(7):1–4.

    Article  Google Scholar 

  34. Palmer C, Krumhansl CL. Mental representation for musical meter. J Exp Psychol Hum Percept Perform. 1990;16(4):728–41.

    Article  PubMed  CAS  Google Scholar 

  35. Snyder JS, Krumhansl CL. Tapping to ragtime: cues to pulse finding. Music Percept. 2001;18(4):455–89.

    Article  Google Scholar 

  36. Mayville JM, Fuchs A, Ding M, Cheyne D, Deecke L, Kelso JAS. Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks. Hum Brain Mapp. 2001;14(2):65–80.

    Article  PubMed  CAS  Google Scholar 

  37. Large EW. On synchronizing movements to music. Hum Movement Sci. 2000;19(4):527–66.

    Article  Google Scholar 

  38. Thul E, Toussaint GT. Rhythm complexity measures: a comparison of mathematical models of human perception and performance. Proceedings of the Ninth International Symposium on Music Information Retrieval (ISMIR). 2008; 663–8.

    Google Scholar 

  39. Pressing J. Black Atlantic rhythm: its computational and transcultural foundations. Music Percept. 2002;19(3):285–310.

    Article  Google Scholar 

  40. Pressing J, Summers J, Magill J. Cognitive multiplicity in polyrhythmic pattern performance. J Exp Psychol Hum Percept Perform. 1996;22(5):1127–48.

    Article  Google Scholar 

  41. Vuust P. Polyrhythm and metre in modern jazz – a study if the Miles Davis’ Quintet of the 1960s (Danish). Royal Academy of Music Aarhus, Denmark; 2000.

    Google Scholar 

  42. Waugh LR. The poetic function in the theory of Roman Jakobson. Poetics Today. 2006;2(1):57–82.

    Google Scholar 

  43. Toussaint GT. A mathematical analysis of African, Brazilian, and Cuban clave rhythms. BRIDGES: Mathematical Connections in Art, Music and Science. 2002:23–7.

    Google Scholar 

  44. Handel S, Lawson GR. The contextual nature of rhythmic interpretation. Percept Psychophys. 1983;34(2):103–20.

    Google Scholar 

  45. Vuust P, Pallesen KJ, Bailey C, van Zuijen TL, Gjedde A, Roepstorff A, et al. To musicians, the message is in the meter: pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage. 2005;24(2):560–4.

    Article  PubMed  Google Scholar 

  46. Vuust P, Roepstorff A, Wallentin M, Mouridsen K, Østergaard L. It don’t mean a thing…: Keeping the rhythm during polyrhythmic tension, activates language areas (BA47). Neuroimage. 2006;31(2):832–41.

    Article  PubMed  CAS  Google Scholar 

  47. Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A. Predictive coding of music–brain responses to rhythmic incongruity. Cortex. 2009;45(1):80–92.

    Article  PubMed  Google Scholar 

  48. Vuust P, Roepstorff A. Listen up! Polyrhythms in brain and music. Cogn Semiotics. 2008;2008(3):134–58.

    Article  Google Scholar 

  49. Vuust P, Wallentin M, Mouridsen K, Østergaard L, Roepstorff A. Tapping polyrhythms in music activates language areas. Neurosci Lett. 2011;494(3):211–6.

    Article  PubMed  CAS  Google Scholar 

  50. Iyer V. Embodied mind, situated cognition, and expressive microtiming in African-American music. Music Percept. 2002;19(3):387–414.

    Article  Google Scholar 

  51. Keil C, Feld S. Music grooves: essays and dialogues. Chicago: University of Chicago Press; 1994.

    Google Scholar 

  52. Waadeland CH. “It don’t mean a thing if it ain’t got that swing” – simulating expressive timing by modulated movements. J New Music Res. 2001;30(1):23–37.

    Article  Google Scholar 

  53. Janata P, Tomic ST, Haberman JM. Sensorimotor coupling in music and the psychology of the groove. J Exp Psychol Gen. 2012;141(1):54–75.

    Article  PubMed  Google Scholar 

  54. Madison G. Experiencing groove induced by music: consistency and phenomenology. Music Percept. 2006;24(2):201–8.

    Article  Google Scholar 

  55. Madison G, Gouyon F, Ullén F, Hörnström K. Modeling the tendency for music to induce movement in humans: first correlations with low-level audio descriptors across music genres. J Exp Psychol Hum Percept Perform. 2011;37(5):1578–94.

    Article  PubMed  Google Scholar 

  56. Stupacher J, Hove MJ, Novembre G, Schütz-Bosbach S, Keller PE. Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn. 2013;82(2):127–36.

    Article  PubMed  Google Scholar 

  57. Witek MAG. ‘… and I feel good!’ The relationship between body-movement, pleasure and groove in music [Doctoral thesis]: University of Oxford; 2013.

    Google Scholar 

  58. Zbikowski L. Modelling the groove: conceptual structure and popular music. J Royal Musical Assoc. 2004;129(2):272–97.

    Article  Google Scholar 

  59. Temperley D. An evaluation system for metrical models. Comput Music J. 2004;28(3).

    Google Scholar 

  60. Friston K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):815–36.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Orr MG, Ohlsson S. Relationship between complexity and liking as a function of expertise. Music Percept. 2005;22(4):583–611.

    Article  Google Scholar 

  62. Huang Y, Rao RP. Predictive coding. Wiley Interdiscip Rev Cogn Sci. 2011;2(5):580–93.

    Article  Google Scholar 

  63. Afridi SK, Griffin NJ, Kaube H, Friston KJ, Ward NS, Frackowiak RS, et al. A positron emission tomography study in spontaneous migraine. Arch Neurol. 2005;62(8):1270–5.

    Article  PubMed  Google Scholar 

  64. Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38.

    Article  PubMed  CAS  Google Scholar 

  65. Friston K, Kiebel S. Predictive coding under the free-energy principle. Philos Trans R Soc Lond B Biol Sci. 2009;364(1521):1211–21.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Friston K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci. 2002;25(1):221–50.

    Article  PubMed  CAS  Google Scholar 

  67. Pearce MT, Ruiz MH, Kapasi S, Wiggins GA, Bhattacharya J. Unsupervised statistical learning underpins computational, behavioural and neural manifestations of musical expectation. Neuroimage. 2010;50(1):302–13.

    Article  PubMed  Google Scholar 

  68. Pearce MT, Wiggins GA. Expectation in melody: the influence of context and learning. Music Percept. 2006;23(5):377–405.

    Article  Google Scholar 

  69. Gebauer L, Kringelbach ML, Vuust P. Ever-changing cycles of musical pleasure: the role of dopamine and anticipation. Psychomusicology. 2012;22(2):152–67.

    Article  Google Scholar 

  70. Vuust P, Frith CD. Anticipation is the key to understanding music and the effects of music on emotion. Behav Brain Sci. 2008;31(5):599–600.

    Article  Google Scholar 

  71. Brochard R, Abecasis D, Potter D, Ragot R, Drake C. The ‘tick-tock’ of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol Sci. 2003;14(4):362–6.

    Article  PubMed  Google Scholar 

  72. Altenmuller E. How many music centers are in the brain? Ann N Y Acad Sci. 2001;930:273–80.

    Article  PubMed  CAS  Google Scholar 

  73. Bharucha JJ, Todd PM. Modeling the perception of tonal structure with neural nets. Comput Music J. 1989;13(4):44–53.

    Article  Google Scholar 

  74. Näätänen R. Attention and brain function. Hillsdale: Erlbaum; 1992.

    Google Scholar 

  75. Näätänen R, Tervaniemi M, Sussman ES, Paavilainen P, Winkler I. ‘Primitive intelligence’ in the auditory cortex. Trends Neurosci. 2001;24(5):283–8.

    Article  PubMed  Google Scholar 

  76. Näätänen R, Paaviliainen P, Alho K, Reinikainen K, Sams M. The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol. 1987;40:125–31.

    Google Scholar 

  77. Friedman D, Cycowicz YM, Gaeta H. The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev. 2001;25(4):355–73.

    Article  PubMed  CAS  Google Scholar 

  78. Sams M, Paavilainen P, Alho K, Näätänen R. Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol. 1985;62(6):437–48.

    Article  PubMed  CAS  Google Scholar 

  79. Paavilainen P, Karlsson M-L, Reinikainen K, Näätänen R. Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalogr Clin Neurophysiol. 1989;73(2):129–41.

    Article  PubMed  CAS  Google Scholar 

  80. Paavilainen P, Simola J, Jaramillo M, Näätänen R, Winkler I. Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN). Psychophysiology. 2001;38(02):359–65.

    Article  PubMed  CAS  Google Scholar 

  81. Van Zuijen TL, Sussman E, Winkler I, Näätänen R, Tervaniemi M. Grouping of sequential sounds-an event-related potential study comparing musicians and nonmusicians. J Cogn Neurosci. 2004;16(2):331–8.

    Article  PubMed  Google Scholar 

  82. Winkler I, Karmos G, Näätänen R. Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Res. 1996;742(1–2):239–52.

    Article  PubMed  CAS  Google Scholar 

  83. Koelsch S, Schröger E, Tervaniemi M. Superior pre-attentive auditory processing in musicians. Neuroreport. 1999;10(6):1309–13.

    Article  PubMed  CAS  Google Scholar 

  84. Nikjeh DA, Lister JJ, Frisch SA. Hearing of note: an electrophysiologic and psychoacoustic comparison of pitch discrimination between vocal and instrumental musicians. Psychophysiology. 2008;45(6):994–1007.

    Article  PubMed  Google Scholar 

  85. Münte TF, Kohlmetz C, Nager W, Altenmüller E. Superior auditory spatial tuning in conductors. Nature. 2001;409(6820):580.

    Article  PubMed  Google Scholar 

  86. Vuust P, Brattico E, Seppanen M, Näätänen R, Tervaniemi M. Practiced musical style shapes auditory skills. Ann N Y Acad Sci. 2012;1252(1):139–46.

    Article  PubMed  Google Scholar 

  87. Vuust P, Brattico E, Seppanen M, Näätänen R, Tervaniemi M. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia. 2012;50(7):1432–43.

    Article  PubMed  Google Scholar 

  88. Wacongne C, Changeux J-P, Dehaene S. A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci. 2012;32(11):3665–78.

    Article  PubMed  CAS  Google Scholar 

  89. Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1–47.

    Article  PubMed  CAS  Google Scholar 

  90. Fiez JA. Phonology, semantics, and the role of the left inferior prefrontal cortex. Hum Brain Mapp. 1997;5(2):79–83.

    Article  PubMed  CAS  Google Scholar 

  91. Fiebach CJ, Schubotz RI. Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca’s area and ventral premotor cortex across domains? Cortex. 2006;42(4):499–502.

    Article  PubMed  Google Scholar 

  92. Witek MA, Clarke EF, Wallentin M, Kringelbach ML, Vuust, P. 2014. PLoS One 9(4) e94446.

    Google Scholar 

  93. Berlyne DE. Aesthetics and psychobiology. East Norwalk: Appleton-Century-Crofts; 1971.

    Google Scholar 

  94. North AC, Hargreaves DJ. Subjective complexity, familiarity, and liking for popular music. Psychomusicology. 1995;14:77–93.

    Article  Google Scholar 

  95. North AC, Hargreaves DJ. Experimental aesthetics and everyday music listening. In: Hargreaves DJ, North AC, editors. The social psychology of music. Oxford: Oxford University Press; 1997.

    Google Scholar 

  96. Berridge KC, Kringelbach ML. Building a neuroscience of pleasure and well-being. Psychol Well Being. 2011;1(1):1–26.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kringelbach ML, Stein A, van Hartevelt TJ. The functional human neuroanatomy of food pleasure cycles. Physiol Behav. 2012;106(3):307–16.

    Article  PubMed  CAS  Google Scholar 

  98. Keitz M, Martin-Soelch C, Leenders KL. Reward processing in the brain: a prerequisite for movement preparation. Neural Plast. 2003;10(1–2):121–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. Leman M. Embodied music cognition and mediation technology. Cambridge: MIT Press; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vuust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vuust, P., Gebauer, L.K., Witek, M.A.G. (2014). Neural Underpinnings of Music: The Polyrhythmic Brain. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_18

Download citation

Publish with us

Policies and ethics