Skip to main content

Neurophysiology of Timing in the Hundreds of Milliseconds: Multiple Layers of Neuronal Clocks in the Medial Premotor Areas

  • Chapter
  • First Online:
Book cover Neurobiology of Interval Timing

Abstract

The precise quantification of time in the subsecond scale is critical for many complex behaviors including music and dance appreciation/execution, speech comprehension/articulation, and the performance of many sports. Nevertheless, its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the cell activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing during a synchronization-continuation tapping task (SCT). In this task the rhythmic behavior of monkeys was synchronized to a metronome of isochronous stimuli in the hundreds of milliseconds range (synchronization phase), followed by a period where animals internally temporalized their movements (continuation phase). Overall, we found that the time-keeping mechanism in MPC is governed by different layers of neural clocks. Close to the temporal control of movements are two separate populations of ramping cells that code for elapsed or remaining time for a tapping movement during the SCT. Thus, the sensorimotor loops engaged during the task may depend on the cyclic interplay between two neuronal chronometers that quantify in their instantaneous discharge rate the time passed and the remaining time for an action. In addition, we found MPC neurons that are tuned to the duration of produced intervals during the rhythmic task, showing an orderly variation in the average discharge rate as a function of duration. All the tested durations in the subsecond scale were represented in the preferred intervals of the cell population. Most of the interval-tuned cells were also tuned to the ordinal structure of the six intervals produced sequentially in the SCT. Hence, this next level of temporal processing may work as the notes of a musical score, providing information to the timing network about what duration and ordinal element of the sequence are being executed. Finally, we describe how the timing circuit can use a dynamic neural representation of the passage of time and the context in which the intervals are executed by integrating the time-varying activity of populations of cells. These neural population clocks can be defined as distinct trajectories in the multidimensional cell response-space. We provide a hypothesis of how these different levels of neural clocks can interact to constitute a coherent timing machine that controls the rhythmic behavior during the SCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diehl RL, Lotto AJ, Holt LL. Speech perception. Annu Rev Psychol. 2004;55:149–79.

    Article  PubMed  Google Scholar 

  2. Shannon RV, et al. Speech recognition with primarily temporal cues. Science. 1995;270:303–4.

    Article  PubMed  CAS  Google Scholar 

  3. Phillips-Silver J, Trainor LJ. Feeling the beat: movement influences infant rhythm perception. Science. 2005;308:1430.

    Article  PubMed  CAS  Google Scholar 

  4. Janata P, Grafton ST. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci. 2003;6:682–7.

    Article  PubMed  CAS  Google Scholar 

  5. Tresilian JR. The accuracy of interceptive action in time and space. Exerc Sport Sci Rev. 2004;32:167–73.

    Article  PubMed  Google Scholar 

  6. Merchant H, Georgopoulos AP. Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol. 2006;95:1–13.

    Article  PubMed  Google Scholar 

  7. Merchant H, Battaglia-Mayer A, Georgopoulos AP. Interception of real and apparent motion targets: psychophysics in humans and monkeys. Exp Brain Res. 2003;152:106–12.

    Article  PubMed  Google Scholar 

  8. Repp BH. Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev. 2005;12:969–92.

    Article  PubMed  Google Scholar 

  9. Wing AM, Kristofferson AB. Response delays and the timing of discrete motor responses. Percept Psychophys. 1973;14:5–12.

    Article  Google Scholar 

  10. Merchant H, Zarco W, Perez O, Prado L, Bartolo R. Measuring time with multiple neural chronometers during a synchronization-continuation task. Proc Natl Acad Sci U S A. 2011;108:19784–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Zarco W, Merchant H, Prado L, Mendez JC. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol. 2009;102:3191–202.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Merchant H, Zarco W, Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol. 2008;99:939–49.

    Article  PubMed  Google Scholar 

  13. Merchant H, Zarco W, Bartolo R, Prado L. The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLoS One. 2008;3:e3169.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gibbon J, Malapani C, Dale CL, Gallistel CR. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7:170–84.

    Article  PubMed  CAS  Google Scholar 

  15. Donnet S, Bartolo R, Fernandes JM, Cunha JP, Prado L, Merchant H. Monkeys time their movement pauses and not their movement kinematics during a synchronization-continuation rhythmic task. J Neurophysiol. 2014;111(6):2250–6.

    Google Scholar 

  16. Merchant H, Honing H. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Front Neurosci. 2014;7(274):1–8.

    Google Scholar 

  17. Honing H, Merchant H. Differences in auditory timing between human and non-human primates. Behav Brain Sci. 2014;37(5):473–474.

    Google Scholar 

  18. Perez O, Kass R, Merchant H. Trial time warping to discriminate stimulus-related from movement-related neural activity. J Neurosci Methods. 2013;212(2):203–10.

    Article  PubMed  Google Scholar 

  19. Perrett SP. Temporal discrimination in the cerebellar cortex during conditioned eyelid responses. Exp Brain Res. 1998;121:115–24.

    Article  PubMed  CAS  Google Scholar 

  20. Jin DZ, Fujii N, Graybiel AM. Neural representation of time in cortico-basal ganglia circuits. Proc Natl Acad Sci U S A. 2009;106:19156–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Tanaka M. Cognitive signals in the primate motor thalamus predict saccade timing. J Neurosci. 2007;27:12109–18.

    Article  PubMed  CAS  Google Scholar 

  22. Leon MI, Shadlen MN. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron. 2008;38:317–27.

    Article  Google Scholar 

  23. Maimon G, Assad JA. A cognitive signal for the proactive timing of action in macaque LIP. Nat Neurosci. 2006;9:948–55.

    Article  PubMed  CAS  Google Scholar 

  24. Oshio K, Chiba A, Inase M. Temporal filtering by prefrontal neurons in duration discrimination. Eur J Neurosci. 2008;28:2333–43.

    Article  PubMed  Google Scholar 

  25. Brody CD, et al. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb Cortex. 2003;13:1196–207.

    Article  PubMed  Google Scholar 

  26. Sakurai Y, Takahashi S, Inoue M. Stimulus duration in working memory is represented by neuronal activity in the monkey prefrontal cortex. Eur J Neurosci. 2004;20:1069–80.

    Article  PubMed  Google Scholar 

  27. Genovesio A, Tsujimoto S, Wise SP. Feature- and order-based timing representations in the frontal cortex. Neuron. 2009;63:254–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Lucchetti C, Bon L. Time-modulated neuronal activity in the premotor cortex of macaque monkeys. Exp Brain Res. 2001;141:254–60.

    Article  PubMed  CAS  Google Scholar 

  29. Lebedev MA, O’Doherty JE, Nicolelis MA. Decoding of temporal intervals from cortical ensemble activity. J Neurophysiol. 2008;99:166–86.

    Article  PubMed  Google Scholar 

  30. Renoult L, Roux S, Riehle A. Time is a rubberband: neuronal activity in monkey motor cortex in relation to time estimation. Eur J Neurosci. 2006;23:3098–108.

    Article  PubMed  Google Scholar 

  31. Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci. 2008;12:502–7.

    Article  Google Scholar 

  32. Merchant H, Harrington D, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36(1):313–36.

    Article  PubMed  CAS  Google Scholar 

  33. Merchant H, Bartolo R, Mendez JC, Perez O, Zarco W, Mendoza G. What can be inferred from multiple-task psychophysical studies about the mechanisms for temporal processing? Multidisciplinary aspects of time and time perception. In: Esposito A, Giagkou M, Cummins F, Papadelis G, Vatakis A, editors. Lecture notes in computer science. Berlin: Springer; 2011. p. 207–29.

    Google Scholar 

  34. Merchant H, Battaglia-Mayer A, Georgopoulos AP. Neural responses during interception of real and apparent circularly moving targets in motor cortex and area 7a. Cereb Cortex. 2004;14:314–31.

    Article  PubMed  Google Scholar 

  35. Merchant H, Perez O. Neurophysiology of interceptive behavior in the primate: encoding and decoding target parameters in the parietofrontal system. Coherent behavior in neural networks. In: Josic K, Matias M, Romo R, Rubin J, editors. Springer series in computational neuroscience, vol 3. New York: Springer; 2009. p. 191–206.

    Google Scholar 

  36. Janssen P, Shadlen MN. A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci. 2005;8:234–41.

    Article  PubMed  CAS  Google Scholar 

  37. Roitman JD, Shadlen N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci. 2002;22:9475–89.

    PubMed  CAS  Google Scholar 

  38. Meegan DV, Aslin RN, Jacobs RA. Motor timing learned without motor training. Nat Neurosci. 2000;3:860–2.

    Article  PubMed  CAS  Google Scholar 

  39. Nagarajan SS, Blake DT, Wright BA, Byl N, Merzenich M. Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J Neurosci. 1998;18:1559–70.

    PubMed  CAS  Google Scholar 

  40. Bartolo R, Merchant H. Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Exp Brain Res. 2009;197:91–100.

    Article  PubMed  Google Scholar 

  41. Ivry RB. The representation of temporal information in perception and motor control. Curr Opin Neurobiol. 1996;6:851–7.

    Article  PubMed  CAS  Google Scholar 

  42. Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33:9082–96.

    Article  PubMed  CAS  Google Scholar 

  43. Tanji J. Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci. 2001;24:631–51.

    Article  PubMed  CAS  Google Scholar 

  44. Merchant H, de Lafuente V, Peña F, Larriva-Sahd J. Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals. Prog Neurobiol. 2012;99(2):163–78.

    Article  PubMed  Google Scholar 

  45. Bartolo R, Prado L, Merchant H. Information processing in the primate basal ganglia during sensory guided and internally driven rhythmic tapping. J Neurosci. 2014;34(11):3910–3923.

    Article  PubMed  CAS  Google Scholar 

  46. Merchant H, Battaglia-Mayer A, Georgopoulos AP. Neurophysiology of the parieto-frontal system during target interception. Neurol Clin Neurophysiol. 2004;1(1):1–5.

    Google Scholar 

  47. Buonomano DV, Laje R. Population clocks: motor timing with neural dynamics. Trends Cogn Sci. 2010;14:520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci. 2000;20:5516–25.

    PubMed  CAS  Google Scholar 

  49. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53:427–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Zarco W, Merchant H. Neural temporal codes for representation of information in the nervous system. Cogn Critique. 2009;1(1):1–30.

    Google Scholar 

  51. Sohn JW, Lee D. Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas. J Neurosci. 2007;27:13655–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Raul Paulín, and Juan Jose Ortiz for their technical assistance. Supported by CONACYT: 151223, PAPIIT: IN200511.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Merchant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merchant, H. et al. (2014). Neurophysiology of Timing in the Hundreds of Milliseconds: Multiple Layers of Neuronal Clocks in the Medial Premotor Areas. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_8

Download citation

Publish with us

Policies and ethics