Skip to main content

Mouse Models of Nonmelanoma Skin Cancer

  • Protocol
  • First Online:
Book cover Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

The skin is the largest organ of the mammalian body, made up of multiple layers, which include the epidermis, dermis, and subcutis (Alam and Ratner, N Engl J Med 344(13):975–983, 2001). The human interfollicular epidermis can be subdivided into five different layers: (1) stratum basale, (2) stratum spinosum, (3) stratum granulosum, (4) stratum lucidum, and (5) stratum corneum, all originating from basal keratinocytes by differentiation (Hameetman et al., BMC cancer 13:58, 2013; Ramirez et al., Differentiation 58(1):53–64, 1994). The epidermis is also able to generate different appendages: hair follicles (HF) and their associated sebaceous glands (Sibilia et al., Cell 102(2):211–220, 2000) as well as sweat glands (Luetteke et al., Genes Dev 8(4):399–413, 1994). The skin has important functions in several biological processes like environmental barrier, tissue regeneration, hair cycling, and wound repair. During these processes, stem cells from the interfollicular epidermis and from the hair follicle bulge are activated to renew the epidermis or hair. The epidermis and hair undergo continuous homeostatic regeneration and mutations, upon mutations which disturb the balance of homeostatic regeneration of epidermis and hair and lead to enhanced proliferation of keratinocytes, development of skin cancer is developed.

Tumors that arise in the skin are mainly of three types: malignant melanoma, arising from melanocytes, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC), the latter two both arising from keratinocytes or hair follicle cells. In this chapter, we will describe some genetically engineered mouse models (GEMM) that aim at modeling human BCC and SCC and their respective precancerous lesions. We will describe the experimental approaches used in our laboratory to analyze tumor-bearing mice focusing on methods necessary for the induction of tumor growth as well as for the molecular and histological analysis of tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam M, Ratner D (2001) Cutaneous squamous-cell carcinoma. N Engl J Med 344(13):975–983. doi:10.1056/NEJM200103293441306

    Article  CAS  PubMed  Google Scholar 

  2. Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8(10):743–754. doi:10.1038/nrc2503

    Article  CAS  PubMed  Google Scholar 

  3. Hameetman L, Commandeur S, Bavinck JN, Wisgerhof HC, de Gruijl FR, Willemze R, Mullenders L, Tensen CP, Vrieling H (2013) Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients. BMC Cancer 13:58. doi:10.1186/1471-2407-13-58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ramirez A, Bravo A, Jorcano JL, Vidal M (1994) Sequences 5′ of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation 58(1):53–64. doi:10.1046/j.1432-0436.1994.5810053.x

    CAS  PubMed  Google Scholar 

  5. Sibilia M, Fleischmann A, Behrens A, Stingl L, Carroll J, Watt FM, Schlessinger J, Wagner EF (2000) The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 102(2):211–220

    Article  CAS  PubMed  Google Scholar 

  6. Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, Lee DC (1994) The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 8(4):399–413

    Article  CAS  PubMed  Google Scholar 

  7. Lichtenberger BM, Tan PK, Niederleithner H, Ferrara N, Petzelbauer P, Sibilia M (2010) Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 140(2):268–279. doi:10.1016/j.cell.2009.12.046

    Article  CAS  PubMed  Google Scholar 

  8. Abel EL, Angel JM, Kiguchi K, DiGiovanni J (2009) Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc 4(9):1350–1362. doi:10.1038/nprot.2009.120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pyerin WG, Hecker E (1977) On the biochemical mechanism of tumorigenesis in mouse skin. VIII. Isolation and characterization of epidermal microsomes and properties of their arylhydrocarbon monooxygenase and epoxide hydr(at)ase. Z Krebsforsch Klin Onkol Cancer Res Clin Oncol 90(3):259–279

    Article  CAS  PubMed  Google Scholar 

  10. Lapouge G, Youssef KK, Vokaer B, Achouri Y, Michaux C, Sotiropoulou PA, Blanpain C (2011) Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci U S A 108(18):7431–7436. doi:10.1073/pnas.1012720108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pouliot N, Pearson HB, Burrows A. Investigating Metastasis Using In Vitro Platforms. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK100379/

    Google Scholar 

  12. Kemp CJ (2005) Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin Cancer Biol 15(6):460–473. doi:10.1016/j.semcancer.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  13. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452(7187):650–653. doi:10.1038/nature06835

    Article  CAS  PubMed  Google Scholar 

  14. Hennings H, Glick AB, Lowry DT, Krsmanovic LS, Sly LM, Yuspa SH (1993) FVB/N mice: an inbred strain sensitive to the chemical induction of squamous cell carcinomas in the skin. Carcinogenesis 14(11):2353–2358

    Article  CAS  PubMed  Google Scholar 

  15. Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R (1996) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14(1):78–81. doi:10.1038/ng0996-78

    Article  CAS  PubMed  Google Scholar 

  16. Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, Bonifas JM, Lam CW, Hynes M, Goddard A, Rosenthal A, Epstein EH Jr, de Sauvage FJ (1998) Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391(6662):90–92. doi:10.1038/34201

    Article  CAS  PubMed  Google Scholar 

  17. Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH, Spiegelman BM (1995) c-fos is required for malignant progression of skin tumors. Cell 82(5):721–732

    Article  CAS  PubMed  Google Scholar 

  18. Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304(5678):1755–1759. doi:10.1126/science.1098020

    Article  CAS  PubMed  Google Scholar 

  19. Li C, Chi S, Xie J (2011) Hedgehog signaling in skin cancers. Cell Signal 23(8):1235–1243. doi:10.1016/j.cellsig.2011.03.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Uhmann A, Dittmann K, Nitzki F, Dressel R, Koleva M, Frommhold A, Zibat A, Binder C, Adham I, Nitsche M, Heller T, Armstrong V, Schulz-Schaeffer W, Wienands J, Hahn H (2007) The Hedgehog receptor Patched controls lymphoid lineage commitment. Blood 110(6):1814–1823. doi:10.1182/blood-2007-02-075648

    Article  CAS  PubMed  Google Scholar 

  21. Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Svard J, Teglund S, Barker N, Toftgard R (2011) Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci U S A 108(10):4099–4104. doi:10.1073/pnas.1014489108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Youssef KK, Lapouge G, Bouvree K, Rorive S, Brohee S, Appelstein O, Larsimont JC, Sukumaran V, Van de Sande B, Pucci D, Dekoninck S, Berthe JV, Aerts S, Salmon I, del Marmol V, Blanpain C (2012) Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation. Nat Cell Biol 14(12):1282–1294. doi:10.1038/ncb2628

    Article  CAS  PubMed  Google Scholar 

  23. Wang GY, Wang J, Mancianti ML, Epstein EH Jr (2011) Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/−) mice. Cancer Cell 19(1):114–124. doi:10.1016/j.ccr.2010.11.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, McMahon AP (2006) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 66(20):10171–10178. doi:10.1158/0008-5472.CAN-06-0657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Eberl M, Klingler S, Mangelberger D, Loipetzberger A, Damhofer H, Zoidl K, Schnidar H, Hache H, Bauer HC, Solca F, Hauser-Kronberger C, Ermilov AN, Verhaegen ME, Bichakjian CK, Dlugosz AA, Nietfeld W, Sibilia M, Lehrach H, Wierling C, Aberger F (2012) Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med 4(3):218–233. doi:10.1002/emmm.201100201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Youssef KK, Van Keymeulen A, Lapouge G, Beck B, Michaux C, Achouri Y, Sotiropoulou PA, Blanpain C (2010) Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol 12(3):299–305. doi:10.1038/ncb2031

    CAS  PubMed  Google Scholar 

  27. Green J, Leigh IM, Poulsom R, Quinn AG (1998) Basal cell carcinoma development is associated with induction of the expression of the transcription factor Gli-1. Br J Dermatol 139(5):911–915

    Article  CAS  PubMed  Google Scholar 

  28. Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A (1997) Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389(6653):876–881. doi:10.1038/39918

    Article  CAS  PubMed  Google Scholar 

  29. Chan EF, Gat U, McNiff JM, Fuchs E (1999) A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 21(4):410–413. doi:10.1038/7747

    Article  CAS  PubMed  Google Scholar 

  30. Krunic AL, Garrod DR, Madani S, Buchanan MD, Clark RE (1998) Immunohistochemical staining for desmogleins 1 and 2 in keratinocytic neoplasms with squamous phenotype: actinic keratosis, keratoacanthoma and squamous cell carcinoma of the skin. Br J Cancer 77(8):1275–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Filler RB, Roberts SJ, Girardi M (2007) Cutaneous two-stage chemical carcinogenesis. CSH Protoc 2007:pdb.prot4837. doi:10.1101/pdb.prot4837

    PubMed  Google Scholar 

  32. Slaga TJ (1986) SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice. Environ Health Perspect 68:27–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hennings H, Spangler EF, Shores R, Mitchell P, Devor D, Shamsuddin AK, Elgjo KM, Yuspa SH (1986) Malignant conversion and metastasis of mouse skin tumors: a comparison of SENCAR and CD-1 mice. Environ Health Perspect 68:69–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hennings H, Shores R, Wenk ML, Spangler EF, Tarone R, Yuspa SH (1983) Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature 304(5921):67–69

    Article  CAS  PubMed  Google Scholar 

  35. Brown K, Strathdee D, Bryson S, Lambie W, Balmain A (1998) The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr Biol 8(9):516–524

    Article  CAS  PubMed  Google Scholar 

  36. Bailleul B, Surani MA, White S, Barton SC, Brown K, Blessing M, Jorcano J, Balmain A (1990) Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62(4):697–708

    Article  CAS  PubMed  Google Scholar 

  37. Greenhalgh DA, Rothnagel JA, Quintanilla MI, Orengo CC, Gagne TA, Bundman DS, Longley MA, Roop DR (1993) Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by a targeted v-Ha-ras oncogene. Mol Carcinog 7(2):99–110

    Article  CAS  PubMed  Google Scholar 

  38. Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, Russell JL, Conti CJ, Johnson DG (1999) E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 19(9):6408–6414

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Caulin C, Nguyen T, Lang GA, Goepfert TM, Brinkley BR, Cai WW, Lozano G, Roop DR (2007) An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest 117(7):1893–1901. doi:10.1172/JCI31721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J, Millar SE, Pear WS, Parmacek MS (2006) Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 66(15):7438–7444. doi:10.1158/0008-5472.CAN-06-0793

    Article  CAS  PubMed  Google Scholar 

  41. Rogers LM, Riordan JD, Swick BL, Meyerholz DK, Dupuy AJ (2013) Ectopic expression of Zmiz1 induces cutaneous squamous cell malignancies in a mouse model of cancer. J Invest Dermatol 133(7):1863–1869. doi:10.1038/jid.2013.77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kemp CJ, Donehower LA, Bradley A, Balmain A (1993) Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74(5):813–822

    Article  CAS  PubMed  Google Scholar 

  43. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F (1999) Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5(7):828–831. doi:10.1038/10552

    Article  CAS  PubMed  Google Scholar 

  44. Ise K, Nakamura K, Nakao K, Shimizu S, Harada H, Ichise T, Miyoshi J, Gondo Y, Ishikawa T, Aiba A, Katsuki M (2000) Targeted deletion of the H-ras gene decreases tumor formation in mouse skin carcinogenesis. Oncogene 19(26):2951–2956. doi:10.1038/sj.onc.1203600

    Article  CAS  PubMed  Google Scholar 

  45. Luke CT, Oki-Idouchi CE, Cline JM, Lorenzo PS (2007) RasGRP1 overexpression in the epidermis of transgenic mice contributes to tumor progression during multistage skin carcinogenesis. Cancer Res 67(21):10190–10197. doi:10.1158/0008-5472.CAN-07-2375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Diez FR, Garrido AA, Sharma A, Luke CT, Stone JC, Dower NA, Cline JM, Lorenzo PS (2009) RasGRP1 transgenic mice develop cutaneous squamous cell carcinomas in response to skin wounding: potential role of granulocyte colony-stimulating factor. Am J Pathol 175(1):392–399. doi:10.2353/ajpath.2009.090036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Vassar R, Hutton ME, Fuchs E (1992) Transgenic overexpression of transforming growth factor alpha bypasses the need for c-Ha-ras mutations in mouse skin tumorigenesis. Mol Cell Biol 12(10):4643–4653

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Aziz MH, Wheeler DL, Bhamb B, Verma AK (2006) Protein kinase C delta overexpressing transgenic mice are resistant to chemically but not to UV radiation-induced development of squamous cell carcinomas: a possible link to specific cytokines and cyclooxygenase-2. Cancer Res 66(2):713–722. doi:10.1158/0008-5472.CAN-05-2684

    Article  CAS  PubMed  Google Scholar 

  49. Jansen AP, Verwiebe EG, Dreckschmidt NE, Wheeler DL, Oberley TD, Verma AK (2001) Protein kinase C-epsilon transgenic mice: a unique model for metastatic squamous cell carcinoma. Cancer Res 61(3):808–812

    CAS  PubMed  Google Scholar 

  50. Li J, Zheng H, Yu F, Yu T, Liu C, Huang S, Wang TC, Ai W (2012) Deficiency of the Kruppel-like factor KLF4 correlates with increased cell proliferation and enhanced skin tumorigenesis. Carcinogenesis 33(6):1239–1246. doi:10.1093/carcin/bgs143

    Article  PubMed Central  PubMed  Google Scholar 

  51. Grachtchouk M, Mo R, Yu S, Zhang X, Sasaki H, Hui CC, Dlugosz AA (2000) Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24(3):216–217. doi:10.1038/73417

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG, Toftgard R (2000) Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci U S A 97(7):3438–3443. doi:10.1073/pnas.050467397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sheng H, Goich S, Wang A, Grachtchouk M, Lowe L, Mo R, Lin K, de Sauvage FJ, Sasaki H, Hui CC, Dlugosz AA (2002) Dissecting the oncogenic potential of Gli2: deletion of an NH(2)-terminal fragment alters skin tumor phenotype. Cancer Res 62(18):5308–5316

    CAS  PubMed  Google Scholar 

  54. Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A, Ericson J, Toftgard R, Teglund S (2006) Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10(2):187–197. doi:10.1016/j.devcel.2005.12.013

    Article  PubMed  Google Scholar 

  55. Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE (2006) Dual degradation signals control Gli protein stability and tumor formation. Genes Dev 20(3):276–281. doi:10.1101/gad.1380906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Li ZJ, Nieuwenhuis E, Nien W, Zhang X, Zhang J, Puviindran V, Wainwright BJ, Kim PC, Hui CC (2012) Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis. Development 139(22):4152–4161. doi:10.1242/dev.081190

    Article  CAS  PubMed  Google Scholar 

  57. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277(5329):1109–1113

    Article  CAS  PubMed  Google Scholar 

  58. Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4(5):619–622

    Article  CAS  PubMed  Google Scholar 

  59. Grachtchouk V, Grachtchouk M, Lowe L, Johnson T, Wei L, Wang A, de Sauvage F, Dlugosz AA (2003) The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J 22(11):2741–2751. doi:10.1093/emboj/cdg271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Niemann C, Owens DM, Hulsken J, Birchmeier W, Watt FM (2002) Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129(1):95–109

    CAS  PubMed  Google Scholar 

  61. Reitmair AH, Redston M, Cai JC, Chuang TC, Bjerknes M, Cheng H, Hay K, Gallinger S, Bapat B, Mak TW (1996) Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res 56(16):3842–3849

    CAS  PubMed  Google Scholar 

  62. Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95(5):605–614

    Article  CAS  PubMed  Google Scholar 

  63. Arwert EN, Lal R, Quist S, Rosewell I, van Rooijen N, Watt FM (2010) Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate. Proc Natl Acad Sci U S A 107(46):19903–19908. doi:10.1073/pnas.1007404107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Poligone B, Hayden MS, Chen L, Pentland AP, Jimi E, Ghosh S (2013) A role for NF-kappaB activity in skin hyperplasia and the development of Keratoacanthomata in mice. PLoS One 8(8):e71887. doi:10.1371/journal.pone.0071887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G (1999) Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 3(5):565–577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We like to thank Beate Lichtenberger for helping in preparing this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sibilia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Amberg, N., Holcmann, M., Glitzner, E., Novoszel, P., Stulnig, G., Sibilia, M. (2015). Mouse Models of Nonmelanoma Skin Cancer. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics