Skip to main content

Mouse Models of Liver Cancer

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the third leading cause of cancer mortality. The great majority of patients are not eligible for curative therapies, and therapeutic approaches for advanced disease show only limited efficacy. Difficulties to treat HCC are due to the heterogenous genetic alterations of HCC, profound alterations in the hepatic microenvironment, and incomplete understanding of HCC biology. Mouse models of HCC will be helpful to improve our understanding of HCC biology, the contributions of the specific pathways and genetic alterations to carcinogenesis. In addition, mouse models of HCC may contribute to elucidate the role of the tumor microenvironment, and serve as models for preclinical studies. As no single mouse model is appropriate to study all of the above, we discuss key features and limitations of commonly used models. Furthermore, we provide detailed protocols for select models, in which HCC is induced genetically, chemically or by transplantation of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379(9822):1245–1255. doi:10.1016/s0140-6736(11)61347-0

    Article  PubMed  Google Scholar 

  2. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365(12):1118–1127. doi:10.1056/NEJMra1001683

    Article  CAS  PubMed  Google Scholar 

  3. Fausto N, Campbell JS (2010) Mouse models of hepatocellular carcinoma. Semin Liver Dis 30(1):87–98. doi:10.1055/s-0030-1247135

    Article  CAS  PubMed  Google Scholar 

  4. Heindryckx F, Colle I, Van Vlierberghe H (2009) Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 90(4):367–386. doi:10.1111/j.1365-2613.2009.00656.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Leenders MW, Nijkamp MW, Borel Rinkes IH (2008) Mouse models in liver cancer research: a review of current literature. World J Gastroenterol 14(45):6915–6923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM (2008) Experimental models of hepatocellular carcinoma. J Hepatol 48(5):858–879. doi:10.1016/j.jhep.2008.01.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dragani TA, Manenti G, Gariboldi M, De Gregorio L, Pierotti MA (1995) Genetics of liver tumor susceptibility in mice. Toxicol Lett 82–83:613–619

    Article  PubMed  Google Scholar 

  8. Feo F, De Miglio MR, Simile MM, Muroni MR, Calvisi DF, Frau M, Pascale RM (2006) Hepatocellular carcinoma as a complex polygenic disease. Interpretive analysis of recent developments on genetic predisposition. Biochim Biophys Acta 1765(2):126–147. doi:10.1016/j.bbcan.2005.08.007

    CAS  PubMed  Google Scholar 

  9. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, Clement B, Balabaud C, Chevet E, Laurent A, Couchy G, Letouze E, Calvo F, Zucman-Rossi J (2012) Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 44(6):694–698. doi:10.1038/ng.2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F, Arai Y, Takahashi H, Shirakihara T, Nagasaki M, Shibuya T, Nakano K, Watanabe-Makino K, Tanaka H, Nakamura H, Kusuda J, Ojima H, Shimada K, Okusaka T, Ueno M, Shigekawa Y, Kawakami Y, Arihiro K, Ohdan H, Gotoh K, Ishikawa O, Ariizumi S, Yamamoto M, Yamada T, Chayama K, Kosuge T, Yamaue H, Kamatani N, Miyano S, Nakagama H, Nakamura Y, Tsunoda T, Shibata T, Nakagawa H (2012) Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 44(7):760–764. doi:10.1038/ng.2291

    Article  CAS  PubMed  Google Scholar 

  11. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM (2007) Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 27(1):55–76. doi:10.1055/s-2006-960171

    Article  CAS  PubMed  Google Scholar 

  12. Ozturk M (1991) p53 mutation in hepatocellular carcinoma after aflatoxin exposure. Lancet 338(8779):1356–1359

    Article  CAS  PubMed  Google Scholar 

  13. Simonetti RG, Camma C, Fiorello F, Politi F, D’Amico G, Pagliaro L (1991) Hepatocellular carcinoma. A worldwide problem and the major risk factors. Dig Dis Sci 36(7):962–972

    Article  CAS  PubMed  Google Scholar 

  14. Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127(5 Suppl 1):S35–S50

    Article  PubMed  Google Scholar 

  15. Luedde T, Schwabe RF (2011) NF-kappaB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8(2):108–118. doi:10.1038/nrgastro.2010.213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Robinson WS (1994) Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Annu Rev Med 45:297–323. doi:10.1146/annurev.med.45.1.297

    Article  CAS  PubMed  Google Scholar 

  17. Malato Y, Naqvi S, Schurmann N, Ng R, Wang B, Zape J, Kay MA, Grimm D, Willenbring H (2011) Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121(12):4850–4860. doi:10.1172/JCI59261, 59261 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK, Thorgeirsson SS (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36(12):1306–1311. doi:10.1038/ng1481

    Article  CAS  PubMed  Google Scholar 

  19. Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, Subramaniam S, Berger NA, Croniger C, Lambris JD, Nadeau JH (2009) Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet 18(16):2975–2988. doi:10.1093/hmg/ddp236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bettermann K, Vucur M, Haybaeck J, Koppe C, Janssen J, Heymann F, Weber A, Weiskirchen R, Liedtke C, Gassler N, Muller M, de Vos R, Wolf MJ, Boege Y, Seleznik GM, Zeller N, Erny D, Fuchs T, Zoller S, Cairo S, Buendia MA, Prinz M, Akira S, Tacke F, Heikenwalder M, Trautwein C, Luedde T (2010) TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 17(5):481–496. doi:10.1016/j.ccr.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  21. Inokuchi S, Aoyama T, Miura K, Osterreicher CH, Kodama Y, Miyai K, Akira S, Brenner DA, Seki E (2010) Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci U S A 107(2):844–849. doi:10.1073/pnas.0909781107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA et al (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75(3):451–462

    Article  CAS  PubMed  Google Scholar 

  23. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M (2007) Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11(2):119–132. doi:10.1016/j.ccr.2006.12.016

    Article  CAS  PubMed  Google Scholar 

  24. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, Lefkowitch JH, Bower M, Friedman R, Sartor RB, Rabadan R, Schwabe RF (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21(4):504–516. doi:10.1016/j.ccr.2012.02.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Matsuda M, Nakamoto Y, Suzuki S, Kurata T, Kaneko S (2005) Interferon-gamma-mediated hepatocarcinogenesis in mice treated with diethylnitrosamine. Lab Invest 85(5):655–663. doi:10.1038/labinvest.3700257, 3700257 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N (2005) Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 102(9):3389–3394. doi:10.1073/pnas.0409722102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Schnur J, Nagy P, Sebestyen A, Schaff Z, Thorgeirsson SS (1999) Chemical hepatocarcinogenesis in transgenic mice overexpressing mature TGF beta-1 in liver. Eur J Cancer 35(13):1842–1845

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Tang Z-Y, Hou J-X (2012) Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol 9(1):32–43

    Article  Google Scholar 

  29. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140(2):197–208. doi:10.1016/j.cell.2009.12.052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499: 97–101. doi:10.1038/nature12347

  31. Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, Masuoko H, Gores G (2011) Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 301(5):G825–G834. doi:10.1152/ajpgi.00145.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistreri WF, Woods SC, Seeley RJ (2010) High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 52(3):934–944. doi:10.1002/hep.23797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Bagi CM, Andresen CJ (2010) Models of hepatocellular carcinoma and biomarker strategy. Cancers 2(3):1441–1452. doi:10.3390/cancers2031441

    Article  PubMed Central  PubMed  Google Scholar 

  34. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Inflammation, Host Response to Injury LSCRP (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110(9):3507–3512. doi:10.1073/pnas.1222878110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Grompe M, Strom S (2013) Mice with human livers. Gastroenterology 145(6):1209–1214. doi:10.1053/j.gastro.2013.09.009, S0016-5085(13)01308-5 [pii]

    Article  PubMed  Google Scholar 

  36. Vesselinovitch SD, Mihailovich N (1983) Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Cancer Res 43(9):4253–4259

    CAS  PubMed  Google Scholar 

  37. Vesselinovitch SD, Koka M, Mihailovich N, Rao KV (1984) Carcinogenicity of diethylnitrosamine in newborn, infant, and adult mice. J Cancer Res Clin Oncol 108(1):60–65

    Article  CAS  PubMed  Google Scholar 

  38. Verna L, Whysner J, Williams GM (1996) N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther 71(1–2):57–81

    Article  CAS  PubMed  Google Scholar 

  39. Diwan BA, Rice JM, Ward JM (1990) Strain-dependent effects of phenobarbital on liver tumor promotion in inbred mice. Prog Clin Biol Res 331:69–83

    CAS  PubMed  Google Scholar 

  40. Tokumo K, Iatropoulos MJ, Williams GM (1991) Butylated hydroxytoluene lacks the activity of phenobarbital in enhancing diethylnitrosamine-induced mouse liver carcinogenesis. Cancer Lett 59(3):193–199

    Article  CAS  PubMed  Google Scholar 

  41. Uehara T, Ainslie GR, Kutanzi K, Pogribny IP, Muskhelishvili L, Izawa T, Yamate J, Kosyk O, Shymonyak S, Bradford BU, Boorman GA, Bataller R, Rusyn I (2013) Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol Sci 132(1):53–63. doi:10.1093/toxsci/kfs342, kfs342 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ruetz S, Gros P (1994) Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell 77(7):1071–1081

    Article  CAS  PubMed  Google Scholar 

  43. Mauad TH, van Nieuwkerk CM, Dingemans KP, Smit JJ, Schinkel AH, Notenboom RG, van den Bergh Weerman MA, Verkruisen RP, Groen AK, Oude Elferink RP et al (1994) Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol 145(5):1237–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, Jacob-Hirsch J, Amariglio N, Rechavi G, Domany E, Galun E, Goldenberg D (2007) Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol Cancer Res 5(11):1159–1170. doi:10.1158/1541-7786.mcr-07-0172

    Article  CAS  PubMed  Google Scholar 

  45. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431(7007):461–466. doi:10.1038/nature02924

    Article  CAS  PubMed  Google Scholar 

  46. Vucur M, Reisinger F, Gautheron J, Janssen J, Roderburg C, Cardenas DV, Kreggenwinkel K, Koppe C, Hammerich L, Hakem R, Unger K, Weber A, Gassler N, Luedde M, Frey N, Neumann UP, Tacke F, Trautwein C, Heikenwalder M, Luedde T (2013) RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by controlling caspase-8- and JNK-dependent compensatory cell proliferation. Cell Rep 4(4):776–790. doi:10.1016/j.celrep.2013.07.035, S2211-1247(13)00397-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13(5):283–296. doi:10.1038/nrm3330

    CAS  PubMed  Google Scholar 

  48. Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11(4):289–301. doi:10.1038/nrc3037

    Article  CAS  PubMed  Google Scholar 

  49. Dong-Dong L, Xi-Ran Z, Xiang-Rong C (2003) Expression and significance of new tumor suppressor gene PTEN in primary liver cancer. J Cell Mol Med 7(1):67–71

    Article  PubMed  Google Scholar 

  50. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, Changchien CS, Lee CM, Tai MH (2003) Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97(8):1929–1940. doi:10.1002/cncr.11266

    Article  CAS  PubMed  Google Scholar 

  51. Yao YJ, Ping XL, Zhang H, Chen FF, Lee PK, Ahsan H, Chen CJ, Lee PH, Peacocke M, Santella RM, Tsou HC (1999) PTEN/MMAC1 mutations in hepatocellular carcinomas. Oncogene 18(20):3181–3185. doi:10.1038/sj.onc.1202659

    Article  CAS  PubMed  Google Scholar 

  52. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19(4):348–355. doi:10.1038/1235

    Article  PubMed  Google Scholar 

  53. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96(4):1563–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113(12):1774–1783. doi:10.1172/jci20513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Watanabe S, Horie Y, Kataoka E, Sato W, Dohmen T, Ohshima S, Goto T, Suzuki A (2007) Non-alcoholic steatohepatitis and hepatocellular carcinoma: lessons from hepatocyte-specific phosphatase and tensin homolog (PTEN)-deficient mice. J Gastroenterol Hepatol 22(Suppl 1):S96–S100. doi:10.1111/j.1440-1746.2006.04665.x

    Article  CAS  PubMed  Google Scholar 

  56. He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, Shalapour S, Seki E, Yost SE, Jepsen K, Frazer KA, Harismendy O, Hatziapostolou M, Iliopoulos D, Suetsugu A, Hoffman RM, Tateishi R, Koike K, Karin M (2013) Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155(2):384–396. doi:10.1016/j.cell.2013.09.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Schmitz V, Tirado-Ledo L, Tiemann K, Raskopf E, Heinicke T, Ziske C, Gonzalez-Carmona MA, Rabe C, Wernert N, Prieto J, Qian C, Sauerbruch T, Caselmann WH (2004) Establishment of an orthotopic tumour model for hepatocellular carcinoma and non-invasive in vivo tumour imaging by high resolution ultrasound in mice. J Hepatol 40(5):787–791. doi:10.1016/j.jhep.2004.01.010

    Article  PubMed  Google Scholar 

  58. Abushahba W, Balan M, Castaneda I, Yuan Y, Reuhl K, Raveche E, de la Torre A, Lasfar A, Kotenko SV (2010) Antitumor activity of type I and type III interferons in BNL hepatoma model. Cancer Immunol Immunother 59(7):1059–1071. doi:10.1007/s00262-010-0831-3

    Article  CAS  PubMed  Google Scholar 

  59. Kornek M, Raskopf E, Tolba R, Becker U, Klockner M, Sauerbruch T, Schmitz V (2008) Accelerated orthotopic hepatocellular carcinomas growth is linked to increased expression of pro-angiogenic and prometastatic factors in murine liver fibrosis. Liver Int 28(4):509–518. doi:10.1111/j.1478-3231.2008.01670.x

    Article  CAS  PubMed  Google Scholar 

  60. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6(11):1087–1095. doi:10.1038/ni1255

    Article  CAS  PubMed  Google Scholar 

  61. Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A 103(46):17378–17383. doi:10.1073/pnas.0604708103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Machida K, Chen CL, Liu JC, Kashiwabara C, Feldman D, French SW, Sher L, Hyeongnam JJ, Tsukamoto H (2012) Cancer stem cells generated by alcohol, diabetes, and hepatitis C virus. J Gastroenterol Hepatol 27(Suppl 2):19–22. doi:10.1111/j.1440-1746.2011.07010.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Thorgeirsson SS, Santoni-Rugiu E (1996) Transgenic mouse models in carcinogenesis: interaction of c-myc with transforming growth factor alpha and hepatocyte growth factor in hepatocarcinogenesis. Br J Clin Pharmacol 42(1):43–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Perret C (2004) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A 101(49):17216–17221. doi:10.1073/pnas.0404761101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM (2004) Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res 64(1):48–54

    Article  CAS  PubMed  Google Scholar 

  66. Nejak-Bowen KN, Monga SP (2011) Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol 21(1):44–58. doi:10.1016/j.semcancer.2010.12.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Katz SF, Lechel A, Obenauf AC, Begus-Nahrmann Y, Kraus JM, Hoffmann EM, Duda J, Eshraghi P, Hartmann D, Liss B, Schirmacher P, Kestler HA, Speicher MR, Rudolph KL (2012) Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation. Gastroenterology 142(5):1229–1239.e1223. doi:10.1053/j.gastro.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  68. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT (1990) TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61(6):1137–1146

    Article  CAS  PubMed  Google Scholar 

  69. Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM (2001) Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153(5):1023–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Vesselinovitch SD, Mihailovich N, Wogan GN, Lombard LS, Rao KV (1972) Aflatoxin B 1, a hepatocarcinogen in the infant mouse. Cancer Res 32(11):2289–2291

    CAS  PubMed  Google Scholar 

  71. Shiota G, Harada K, Ishida M, Tomie Y, Okubo M, Katayama S, Ito H, Kawasaki H (1999) Inhibition of hepatocellular carcinoma by glycyrrhizin in diethylnitrosamine-treated mice. Carcinogenesis 20(1):59–63

    Article  CAS  PubMed  Google Scholar 

  72. Nikolaou K, Tsagaratou A, Eftychi C, Kollias G, Mosialos G, Talianidis I (2012) Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell 21(6):738–750. doi:10.1016/j.ccr.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  73. Weber A, Boger R, Vick B, Urbanik T, Haybaeck J, Zoller S, Teufel A, Krammer PH, Opferman JT, Galle PR, Schuchmann M, Heikenwalder M, Schulze-Bergkamen H (2010) Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology 51(4):1226–1236. doi:10.1002/hep.23479

    Article  PubMed Central  PubMed  Google Scholar 

  74. Hikita H, Kodama T, Shimizu S, Li W, Shigekawa M, Tanaka S, Hosui A, Miyagi T, Tatsumi T, Kanto T, Hiramatsu N, Morii E, Hayashi N, Takehara T (2012) Bak deficiency inhibits liver carcinogenesis: a causal link between apoptosis and carcinogenesis. J Hepatol 57(1):92–100. doi:10.1016/j.jhep.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  75. Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S, Pinkert CA, Brinster RL, Palmiter RD (1989) Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59(6):1145–1156

    Article  CAS  PubMed  Google Scholar 

  76. Kim CM, Koike K, Saito I, Miyamura T, Jay G (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351(6324):317–320. doi:10.1038/351317a0

    Article  CAS  PubMed  Google Scholar 

  77. Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Ishibashi K, Matsuura Y, Kimura S, Miyamura T, Koike K (1998) The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4(9):1065–1067. doi:10.1038/2053

    Article  CAS  PubMed  Google Scholar 

  78. Ghoshal AK, Farber E (1984) The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis 5(10):1367–1370

    Article  CAS  PubMed  Google Scholar 

  79. Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273(25):15639–15645

    Article  CAS  PubMed  Google Scholar 

  80. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800. doi:10.1101/gad.2016211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193(2):275–284. doi:10.1083/jcb.201102031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E, Bronson RT, Kwiatkowski DJ, Manning BD (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5(217):ra24. doi:10.1126/scisignal.2002739

    PubMed Central  PubMed  Google Scholar 

  83. Tang TC, Man S, Xu P, Francia G, Hashimoto K, Emmenegger U, Kerbel RS (2010) Development of a resistance-like phenotype to sorafenib by human hepatocellular carcinoma cells is reversible and can be delayed by metronomic UFT chemotherapy. Neoplasia 12(11):928–940

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Feldman DE, Chen C, Punj V, Tsukamoto H, Machida K (2012) Pluripotency factor-mediated expression of the leptin receptor (OB-R) links obesity to oncogenesis through tumor-initiating stem cells. Proc Natl Acad Sci U S A 109(3):829–834. doi:10.1073/pnas.1114438109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Huynh H, Soo KC, Chow PK, Panasci L, Tran E (2006) Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin Cancer Res 12(14 Pt 1):4306–4314. doi:10.1158/1078-0432.ccr-05-2568

    Article  CAS  PubMed  Google Scholar 

  86. Kashofer K, Tschernatsch MM, Mischinger HJ, Iberer F, Zatloukal K (2009) The disease relevance of human hepatocellular xenograft models: molecular characterization and review of the literature. Cancer Lett 286(1):121–128. doi:10.1016/j.canlet.2008.11.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ekihiro Seki, Dianne Dapito, and Xueru Mu for helpful discussions and sharing images from their studies. This work was supported by NIH grants 1K22CA178098 (to J.M.C.), U54CA163111 (Sub 5298), 5R01DK76920, and 5R01DK075830 (to R.F.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Schwabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Caviglia, J.M., Schwabe, R.F. (2015). Mouse Models of Liver Cancer. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics