Skip to main content

Profiling the Binding Sites of RNA-Binding Proteins with Nucleotide Resolution Using iCLIP

  • Protocol
Book cover Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1358))

Abstract

The importance of posttranscriptional regulation in cellular metabolism has recently gone beyond what was previously appreciated. The regulatory mechanisms are controlled by RNA-binding proteins (RBPs), which form complexes with RNA and regulate RNA processing, stability, and localization, among others. Consistently, mutations in RBPs result in defects in developmental processes, diseases, and cancer. Gaining deeper insights into the biology of RNA–RBP interactions will lead to a better understanding of regulatory processes and disease development. Several techniques have been developed to capture the properties of RNA–RBP interactions. Furthermore, the development of high-throughput sequencing has broadened the capability of these methods. Here, we summarize individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP), a powerful technique that provides genome-wide information on RNA–RBP interactions at nucleotide resolution. In this chapter, we outline the iCLIP protocol and list possible controls that allow a targeted and cost-minimizing optimization of the protocol for an RBP-of-interest. Moreover, we provide notes on experimental design and a troubleshooting guideline for common problems that can occur during iCLIP library preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaper JM (1969) Nucleic acid-protein interactions in turnip yellow mosaic virus. Science 166(3902):248–250

    Article  CAS  PubMed  Google Scholar 

  2. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15:829–845

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg JR (1979) Ultraviolet light-induced crosslinking of mRNA to proteins. Nucleic Acids Res 6(2):715–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  CAS  PubMed  Google Scholar 

  5. Scherrer T, Mittal N, Janga SC et al (2010) A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS One 5:e15499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Tsvetanova NG, Klass DM, Salzman J et al (2010) Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5:e12671

    Article  PubMed Central  PubMed  Google Scholar 

  7. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-Binding proteins. Cell 149:1393–1406

    Article  CAS  PubMed  Google Scholar 

  8. Kwon SC, Yi H, Eichelbaum K et al (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol 20:1122–1130

    Article  CAS  PubMed  Google Scholar 

  9. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690

    Article  CAS  PubMed  Google Scholar 

  10. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chelly J, Mandel JL (2001) Monogenic causes of X-linked mental retardation. Nat Rev Genet 2:669–680

    Article  CAS  PubMed  Google Scholar 

  12. Mili S, Steitz JA (2004) Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10:1692–1694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ule J, Jensen K, Mele A et al (2005) CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37:376–386

    Article  CAS  PubMed  Google Scholar 

  14. Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  PubMed  Google Scholar 

  15. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Saulière J, Murigneux V, Wang Z et al (2012) CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat Struct Mol Biol 19:1124–1131

    Article  PubMed  Google Scholar 

  18. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sugimoto Y, König J, Hussain S et al (2012) Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol 13:R67

    Article  PubMed Central  PubMed  Google Scholar 

  20. Huppertz I, Attig J, D’Ambrogio A et al (2014) iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65:274–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jangi M, Boutz PL, Paul P et al (2014) Rbfox2 controls autoregulation in RNA-binding protein networks. Genes Dev 28:637–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zarnack K, König J, Tajnik M et al (2013) Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152:453–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hussain S, Sajini AA, Blanco S et al (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Broughton JP, Pasquinelli AE (2013) Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods 63:119–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bosson AD, Zamudio JR, Sharp PA (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 56:347–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This protocol is based on previous versions that were derived with a lot of feedback and discussions in the Ule lab. We would also like to thank all iCLIP users for their feedback and comments that help to continuously improve the protocol. We acknowledge Dr. Kathi Zarnack and members of the König lab for discussions and help on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian König .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sutandy, F.R., Hildebrandt, A., König, J. (2016). Profiling the Binding Sites of RNA-Binding Proteins with Nucleotide Resolution Using iCLIP. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 1358. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3067-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3067-8_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3066-1

  • Online ISBN: 978-1-4939-3067-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics