Skip to main content

Assay of Copper Transfer and Binding to P1B-ATPases

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

Abstract

P1B-type ATPases transport transition metals across biological membranes. The chemical characteristics of these substrates, as well as, physiological requirements have contributed to the evolution of high metal binding affinities (fM) in these enzymes. Metal binding determinations are consequently facilitated by the stable metal–protein interaction, while affinity measurements require careful analysis of metal levels. In the cell, transition metals are associated with chaperone proteins. Metals reach the ATPase transport sites following specific protein–protein interactions and ligand exchange enabling the metal transfer from the chaperone to the transporter. Here, we describe methods for analyzing the binding of Cu+ to Cu+-ATPases, as well as the approach to monitor Cu+ transfer from soluble Cu+-chaperones donors to and from membrane Cu+-ATPases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15(1):3–14

    Article  PubMed  CAS  Google Scholar 

  2. Argüello JM, González-Guerrero M, Raimunda D (2011) Bacterial transition metal P1B-ATPases: transport mechanism and roles in virulence. Biochemistry 50(46):9940–9949

    Article  PubMed  PubMed Central  Google Scholar 

  3. Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195(2):93–108

    Article  PubMed  Google Scholar 

  4. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97(2):652–656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Osman D, Cavet JS (2008) Copper homeostasis in bacteria. Adv Appl Microbiol 65:217–247

    Article  PubMed  CAS  Google Scholar 

  6. Argüello JM, Raimunda D, González-Guerrero M (2012) Metal transport across biomembranes: emerging models for a distinct chemistry. J Biol Chem 287(17):13510–13517

    Article  PubMed  PubMed Central  Google Scholar 

  7. Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Padilla-Benavides T, George Thompson AM, McEvoy MM, Argüello JM (2014) Mechanism of ATPase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli CopA and CusF. J Biol Chem 289(30):20492–20501

    Google Scholar 

  9. González-Guerrero M, Argüello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci U S A 105(16):5992–5997

    Article  PubMed  PubMed Central  Google Scholar 

  10. Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20(3–4):233–248

    Article  PubMed  Google Scholar 

  11. González-Guerrero M, Eren E, Rawat S, Stemmler TL, Argüello JM (2008) Structure of the two transmembrane Cu+ transport sites of the Cu+-ATPases. J Biol Chem 283(44):29753–29759

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raimunda D, Subramanian P, Stemmler T, Argüello JM (2012) A tetrahedral coordination of Zinc during transmembrane transport by P-type Zn2+-ATPases. Biochim Biophys Acta 1818(5):1374–1377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Padilla-Benavides T, Long JE, Raimunda D, Sassetti CM, Argüello JM (2013) A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J Biol Chem 288(16):11334–11347

    Google Scholar 

  14. Zielazinski EL, Cutsail GE III, Hoffman BM, Stemmler TL, Rosenzweig AC (2012) Characterization of a cobalt-specific P(1B)-ATPase. Biochemistry 51(40):7891–7900

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Liu J, Dutta SJ, Stemmler AJ, Mitra B (2006) Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Biochemistry 45(3):763–772

    Article  PubMed  CAS  Google Scholar 

  16. Glynn IM, Karlish SJ (1990) Occluded cations in active transport. Annu Rev Biochem 59:171–205

    Article  PubMed  CAS  Google Scholar 

  17. Eren E, Kennedy DC, Maroney MJ, Argüello JM (2006) A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. J Biol Chem 281(45):33881–33891

    Google Scholar 

  18. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284(5415):805–808

    Article  PubMed  CAS  Google Scholar 

  19. Padilla-Benavides T, McCann CJ, Argüello JM (2013) The mechanism of Cu+ transport ATPases: interaction with Cu+ chaperones and the role of transient metal-binding sites. J Biol Chem 288(1):69–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. González-Guerrero M, Hong D, Argüello JM (2009) Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding. J Biol Chem 284(31):20804–20811

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gourdon P et al (2011) Crystal structure of a copper-transporting PIB-type ATPase. Nature 475(7354):59–64

    Article  PubMed  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  23. Brenner AJ, Harris ED (1995) A quantitative test for copper using bicinchoninic acid. Anal Biochem 226(1):80–84

    Article  PubMed  CAS  Google Scholar 

  24. Yatsunyk LA, Rosenzweig AC (2007) Cu(I) binding and transfer by the N terminus of the Wilson disease protein. J Biol Chem 282(12):8622–8631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Argüello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Padilla-Benavides, T., Argüello, J.M. (2016). Assay of Copper Transfer and Binding to P1B-ATPases. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_24

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics