Skip to main content

Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation

  • Protocol
  • First Online:
Book cover Kidney Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1397))

Abstract

Protein phosphorylation has traditionally been detected by radioisotope phosphate labeling of proteins with radioactive ATP. Several nonradioactive assays with phosphorylation site-specific antibodies are now available for the analysis of phosphorylation status at target sites. However, due to their high specificity, these antibodies they cannot be used to detect unidentified phosphorylation sites. Recently, Phos-tag technology has been developed to overcome the disadvantages and limitations of phosphospecific antibodies. Phos-tag and its derivatives conjugated to biotin, acrylamide, or agarose, form alkoxide-bridged dinuclear metal complexes, which can capture phosphate monoester dianions bound to serine, threonine, and tyrosine residues, in an amino acid sequence-independent manner. Here, we describe our method, which is based on in vitro kinase assay and Western blotting analysis using biotinylated Phos-tag and horseradish peroxidase-conjugated streptavidin, to determine the sites of TRPC6 (transient receptor potential canonical 6) channel phosphorylated by protein kinase A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127

    Article  CAS  PubMed  Google Scholar 

  2. Cohen P (2002) Protein kinases— the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  CAS  PubMed  Google Scholar 

  3. Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303:1800–1805

    Article  CAS  PubMed  Google Scholar 

  4. Newman RH, Zhang J, Zhu H (2014) Toward a systems-level view of dynamic phosphorylation networks. Front Genet 5:263

    PubMed  PubMed Central  Google Scholar 

  5. Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond B Biol Sci 367:2513–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kinoshita E, Kinoshita-Kikuta E, Takiyama K et al (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  CAS  PubMed  Google Scholar 

  7. Kinoshita E, Kinoshita-Kikuta E, Sugiyama Y et al (2012) Highly sensitive detection of protein phosphorylation by using improved Phos-tag Biotin. Proteomics 12:932–937

    Article  CAS  PubMed  Google Scholar 

  8. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4:1513–1521

    Article  CAS  PubMed  Google Scholar 

  9. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Mori E, Mori Y et al (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561:415–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hisatsune C, Kuroda Y, Nakamura K et al (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    Article  CAS  PubMed  Google Scholar 

  12. Kim JY, Saffen D (2005) Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280:32035–32047

    Article  CAS  PubMed  Google Scholar 

  13. Kinoshita H, Kuwahara K, Nishida M et al (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860

    Article  CAS  PubMed  Google Scholar 

  14. Nishioka K, Nishida M, Ariyoshi M et al (2011) Cilostazol suppresses angiotensin II-induced vasoconstriction via protein kinase A-mediated phosphorylation of the transient receptor potential canonical 6 channel. Arterioscler Thromb Vasc Biol 31:2278–2286

    Article  CAS  PubMed  Google Scholar 

  15. Horinouchi T, Higa T, Aoyagi H et al (2012) Adenylate cyclase/cAMP/protein kinase A signaling pathway inhibits endothelin type A receptor-operated Ca2+ entry mediated via transient receptor potential canonical 6 channels. J Pharmacol Exp Ther 340:143–151

    Article  CAS  PubMed  Google Scholar 

  16. Songyang Z, Blechner S, Hoagland N et al (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol 4:973–982

    Article  CAS  PubMed  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by Grants-in-Aid for Young Scientists (B) from Japan Society for the Promotion of Science [grant 21790236] (to T. Horinouchi); Grants-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science [grant 21390068] (to S.M.); and grants from Smoking Research Foundation of Japan (to S.M.), Mitsubishi Pharma Research Foundation (to T. Horinouchi), the Pharmacological Research Foundation, Tokyo (to T. Horinouchi), the Shimabara Science Promotion Foundation (to T. Horinouchi), and Actelion Pharmaceuticals Japan Ltd. (to T. Horinouchi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Horinouchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Horinouchi, T., Terada, K., Higashi, T., Miwa, S. (2016). Using Phos-Tag in Western Blotting Analysis to Evaluate Protein Phosphorylation. In: Hewitson, T., Smith, E., Holt, S. (eds) Kidney Research. Methods in Molecular Biology, vol 1397. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3353-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3353-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3351-8

  • Online ISBN: 978-1-4939-3353-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics