Skip to main content

LINE-1 Cultured Cell Retrotransposition Assay

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1400))

Abstract

The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  2. Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011) LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254:1805–1808

    Article  CAS  PubMed  Google Scholar 

  4. Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125

    Article  CAS  PubMed  Google Scholar 

  5. Athanikar JN, Badge RM, Moran JV (2004) A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res 32:3846–3855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Becker KG, Swergold GD, Ozato K, Thayer RE (1993) Binding of the ubiquitous nuclear transcription factor YY1 to a cis regulatory sequence in the human LINE-1 transposable element. Hum Mol Genet 2:1697–1702

    Article  CAS  PubMed  Google Scholar 

  7. Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10:6718–6729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21:1973–1985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Callahan KE, Hickman AB, Jones CE, Ghirlando R, Furano AV (2012) Polymerization and nucleic acid-binding properties of human L1 ORF1 protein. Nucleic Acids Res 40:813–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15:630–639

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Hohjoh H, Singer MF (1997) Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J Mol Biol 271:7–12

    Article  CAS  PubMed  Google Scholar 

  12. Holmes SE, Singer MF, Swergold GD (1992) Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J Biol Chem 267:19765–19768

    CAS  PubMed  Google Scholar 

  13. Khazina E, Weichenrieder O (2009) Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci U S A 106:731–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kolosha VO, Martin SL (1997) In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc Natl Acad Sci U S A 94:10155–10160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kolosha VO, Martin SL (2003) High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J Biol Chem 278:8112–8117

    Article  CAS  PubMed  Google Scholar 

  16. Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11:4804–4807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21:467–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, Gilbert N (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6:e1001150

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ergun S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H, Chalajour F, Kilic N, Stratling WH, Schumann GG (2004) Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem 279:27753–27763

    Article  PubMed  Google Scholar 

  20. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  PubMed  Google Scholar 

  21. Goodier JL, Ostertag EM, Engleka KA, Seleme MC, Kazazian HH Jr (2004) A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13:1041–1048

    Article  CAS  PubMed  Google Scholar 

  22. Hattori M, Kuhara S, Takenaka O, Sakaki Y (1986) L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321:625–628

    Article  CAS  PubMed  Google Scholar 

  23. Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  CAS  PubMed  Google Scholar 

  24. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  CAS  PubMed  Google Scholar 

  25. Taylor MS, Lacava J, Mita P, Molloy KR, Huang CR, Li D, Adney EM, Jiang H, Burns KH, Chait BT, Rout MP, Boeke JD, Dai L (2013) Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 155:1034–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fanning T, Singer M (1987) The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res 15:2251–2260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Moran JV (1999) Human L1 retrotransposition: insights and peculiarities learned from a cultured cell retrotransposition assay. Genetica 107:39–51

    Article  CAS  PubMed  Google Scholar 

  28. Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283:1530–1534

    Article  CAS  PubMed  Google Scholar 

  29. Perepelitsa-Belancio V, Deininger P (2003) RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 35:363–366

    Article  CAS  PubMed  Google Scholar 

  30. Usdin K, Furano AV (1989) The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1 (LINE) element. J Biol Chem 264:15681–15687

    CAS  PubMed  Google Scholar 

  31. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    Article  CAS  PubMed  Google Scholar 

  32. Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gilbert N, Lutz S, Morrish TA, Moran JV (2005) Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol Cell Biol 25:7780–7795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110:315–325

    Article  CAS  PubMed  Google Scholar 

  35. Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94:1872–1877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165

    Article  CAS  PubMed  Google Scholar 

  37. Grimaldi G, Skowronski J, Singer MF (1984) Defining the beginning and end of KpnI family segments. EMBO J 3:1753–1759

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G, Boeke JD (2002) Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338

    Article  CAS  PubMed  Google Scholar 

  39. Myers JS, Vincent BJ, Udall H, Watkins WS, Morrish TA, Kilroy GE, Swergold GD, Henke J, Henke L, Moran JV, Jorde LB, Batzer MA (2002) A comprehensive analysis of recently integrated human Ta L1 elements. Am J Hum Genet 71:312–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Buzdin A, Gogvadze E, Kovalskaya E, Volchkov P, Ustyugova S, Illarionova A, Fushan A, Vinogradova T, Sverdlov E (2003) The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. Nucleic Acids Res 31:4385–4390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Buzdin A, Ustyugova S, Gogvadze E, Vinogradova T, Lebedev Y, Sverdlov E (2002) A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3′ terminus of l1. Genomics 80:402–406

    Article  CAS  PubMed  Google Scholar 

  43. Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    Article  CAS  PubMed  Google Scholar 

  44. Dewannieux M, Heidmann T (2005) L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol 349:241–247

    Article  CAS  PubMed  Google Scholar 

  45. Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Perez JL, Doucet AJ, Bucheton A, Moran JV, Gilbert N (2007) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17:602–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20:3386–3400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Hancks DC, Mandal PK, Cheung LE, Kazazian HH Jr (2012) The minimal active human SVA retrotransposon requires only the 5′-hexamer and Alu-like domains. Mol Cell Biol 32:4718–4726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M, Lower J, Stratling WH, Lower R, Schumann GG (2012) The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40:1666–1683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2:e205

    Article  PubMed Central  PubMed  Google Scholar 

  51. Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21:1429–1439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    Article  CAS  PubMed  Google Scholar 

  53. Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22:191–203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500

    Article  CAS  PubMed  Google Scholar 

  55. Curcio MJ, Garfinkel DJ (1991) Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci U S A 88:936–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Heidmann T, Heidmann O, Nicolas JF (1988) An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc Natl Acad Sci U S A 85:2219–2223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Freeman JD, Goodchild NL, Mager DL (1994) A modified indicator gene for selection of retrotransposition events in mammalian cells. Biotechniques 17:46, 48-49, 52

    CAS  PubMed  Google Scholar 

  58. Wei W, Morrish TA, Alisch RS, Moran JV (2000) A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal Biochem 284:435–438

    Article  CAS  PubMed  Google Scholar 

  59. Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MC, Muotri AR, Mu Y, Carson CT, Macia A, Moran JV, Gage FH (2011) Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A 108:20382–20387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S, Carter CC, Hammer GD, Collins KL, O’Shea KS, Menendez P, Moran JV (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466:769–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kubo S, Seleme MC, Soifer HS, Perez JL, Moran JV, Kazazian HH Jr, Kasahara N (2006) L1 retrotransposition in nondividing and primary human somatic cells. Proc Natl Acad Sci U S A 103:8036–8041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    Article  CAS  PubMed  Google Scholar 

  64. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N, Gerton GL, Kazazian HH Jr (2002) A mouse model of human L1 retrotransposition. Nat Genet 32:655–660

    Article  CAS  PubMed  Google Scholar 

  66. Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV, Kazazian HH Jr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28:1418–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Kopera HC, Moldovan JB, Morrish TA, Garcia-Perez JL, Moran JV (2011) Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc Natl Acad Sci U S A 108:20345–20350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV (2007) Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 446:208–212

    Article  CAS  PubMed  Google Scholar 

  69. Goodier JL, Zhang L, Vetter MR, Kazazian HH Jr (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27:6469–6483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Xie Y, Rosser JM, Thompson TL, Boeke JD, An W (2011) Characterization of L1 retrotransposition with high-throughput dual-luciferase assays. Nucleic Acids Res 39:e16

    Article  PubMed Central  PubMed  Google Scholar 

  71. Rangwala SH, Kazazian HH Jr (2009) The L1 retrotransposition assay: a retrospective and toolkit. Methods 49:219–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Hulme AE, Bogerd HP, Cullen BR, Moran JV (2007) Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 390:199–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100:5280–5285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  CAS  PubMed  Google Scholar 

  75. Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H, Roos D, Kazazian HH Jr (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71:327–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH, O’Shea KS, Moran JV (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16:1569–1577

    Article  CAS  PubMed  Google Scholar 

  77. Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV (2006) Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 20:210–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O’Shea KS, Moran JV, Cullen BR (2006) Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci U S A 103:8780–8785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV (2014) APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. Elife 3:e02008

    PubMed Central  PubMed  Google Scholar 

  80. Moldovan JB, Moran JV (2015) The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition. PLoS Genet 11(5):e1005121

    Google Scholar 

  81. Esnault C, Casella JF, Heidmann T (2002) A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells. Nucleic Acids Res 30:e49

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nancy Leff for helpful comments during the preparation of this manuscript. This work was supported in part by NIH grant GM060518 to J.V.M. The authors were supported in part by fellowships from the American Cancer Society #PF-07-059-01GMC (H.C.K.), NIGMS #5-T32-GM07544 (P.A.L. and S.R.R.), and NIGMS #T32-GM007315 (J.B.M.). J.V.M. is an investigator of the Howard Hughes Medical Institute.

Conflict of Interest

J.V.M. is an inventor on the patent: “Kazazian, H.H., Boeke, J.D., Moran, J.V., and Dombrowski, B.A. Compositions and methods of use of mammalian retrotransposons. Application No. 60/006,831; Patent No. 6,150,160; Issued November 21, 2000.” J.V.M. has not made any money from this patent and voluntarily discloses this information.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huira C. Kopera Ph.D. or John V. Moran Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kopera, H.C., Larson, P.A., Moldovan, J.B., Richardson, S.R., Liu, Y., Moran, J.V. (2016). LINE-1 Cultured Cell Retrotransposition Assay. In: Garcia-Pérez, J. (eds) Transposons and Retrotransposons. Methods in Molecular Biology, vol 1400. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3372-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3372-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3370-9

  • Online ISBN: 978-1-4939-3372-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics